Tailoring Single Co–N4 Sites Within the Second Coordination Shell for Enhanced Natural Light-Driven Photosynthetic H2O2 Production

催化作用 协调数 解吸 材料科学 密度泛函理论 化学物理 吸附 电子转移 纳米技术 化学 光化学 物理化学 计算化学 离子 有机化学
作者
Xiao Ge,Xinya Liu,J. Xu,Xiaoming Zheng,Li-Jiao Tian,Xiaozhi Wang
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.5c02303
摘要

Rational regulation of the coordination environment of single-atom catalysts (SACs) is a promising yet challenging strategy to enhance their activity. Here, we introduce an O atom into the second coordination shell of Co–N4 sites via a simple thermal treatment, forming a Co–N4–ON matrix to boost photosynthetic hydrogen peroxide (H2O2) production. This modification significantly alters the electronic structure of the Co site, bringing the d-band center closer to the Fermi energy and elevating the conduction band of Co–N4–CN to enhance its reducing capacity. Density functional theory (DFT) calculations reveal intensified charge redistribution and a reduced work function in Co–N4–ON, facilitating O2 adsorption. Notably, Co–N4–ON exhibits the lowest O2 adsorption energy, indicating a stronger interaction between Co–N4–O and O2, which is further strengthened by orbital hybridization and charge transfer at their interface, leading to enhanced O2 activation. The optimized Co–N4–ON catalyst demonstrates superior O2 reduction capabilities with the lowest energy barrier during H2O2 desorption. Consequently, it achieves a H2O2 production rate of 3098.18 μmol g–1 h–1 under neutral conditions, which is 2.6 times higher than that of Co–N4–CN. Moreover, it maintains a production rate of 1967.79 μmol g–1 h–1 over 10 h in a continuous flow reactor under natural sunlight and ambient air, highlighting its durability and practicality. This study underscores the crucial role of the second coordination shell in SACs and offers valuable insights into their atomic-level structure–activity relationships, thus contributing to advancements in catalyst design for efficient photosynthetic H2O2 production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YYY发布了新的文献求助10
1秒前
粥粥完成签到,获得积分20
1秒前
奈何完成签到,获得积分10
2秒前
澍澍发布了新的文献求助10
2秒前
非要叫我起个昵称完成签到,获得积分10
3秒前
Akim应助文艺的寻凝采纳,获得10
3秒前
3秒前
6秒前
帅气的藏鸟完成签到,获得积分10
6秒前
123完成签到,获得积分10
6秒前
Hello应助野哥采纳,获得10
6秒前
dywen发布了新的文献求助80
9秒前
从容雅柏完成签到,获得积分10
9秒前
小布布发布了新的文献求助100
9秒前
Owen应助典雅碧空采纳,获得10
12秒前
各位大佬帮帮忙完成签到,获得积分10
16秒前
要减肥的寻琴完成签到,获得积分10
19秒前
22秒前
24秒前
取法乎上完成签到 ,获得积分10
29秒前
俏皮白云发布了新的文献求助10
30秒前
蘑菇屋应助科研通管家采纳,获得10
31秒前
Zain_init应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
许甜甜鸭应助科研通管家采纳,获得10
31秒前
HEIKU应助啦啦啦采纳,获得10
31秒前
乐乐应助科研通管家采纳,获得10
31秒前
情怀应助科研通管家采纳,获得10
31秒前
顾矜应助科研通管家采纳,获得30
31秒前
iamfee应助科研通管家采纳,获得10
31秒前
Owen应助科研通管家采纳,获得10
31秒前
脑洞疼应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
科研通AI5应助科研通管家采纳,获得10
31秒前
JamesPei应助科研通管家采纳,获得10
31秒前
CodeCraft应助科研通管家采纳,获得10
31秒前
wanci应助科研通管家采纳,获得10
31秒前
脑洞疼应助科研通管家采纳,获得10
32秒前
Owen应助科研通管家采纳,获得10
32秒前
iamfee应助科研通管家采纳,获得10
32秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823579
求助须知:如何正确求助?哪些是违规求助? 3366051
关于积分的说明 10438541
捐赠科研通 3085181
什么是DOI,文献DOI怎么找? 1697217
邀请新用户注册赠送积分活动 816292
科研通“疑难数据库(出版商)”最低求助积分说明 769462