Disinformation about diet and nutrition on social networks: a review of the literature

造谣 社会化媒体 社会学 互联网隐私 政治学 计算机科学 法学
作者
S. Fernández,Beatríz Gómez Baceiredo,Pedro Jiménez Hidalgo,María Del Carmen Lozano-Estevan,Iván Herrera‐Peco
出处
期刊:Nutricion Hospitalaria [Arán Ediciones]
标识
DOI:10.20960/nh.05533
摘要

social networks have become indispensable for global communication, offering unparalleled access to information. However, the lack of content regulation has allowed health and nutrition misinformation to thrive, posing significant public health risks. this study aimed to identify the social networks most frequently used for spreading nutrition-related misinformation and evaluate the primary topics, including diseases and dietary claims, featured in these messages. a systematic review of the literature was conducted, analyzing studies focused on nutrition-related misinformation across platforms such as Twitter, Instagram, TikTok, and YouTube. Data collection adhered to PRISMA guidelines, and findings were synthesized narratively to address the study objectives. this study analyzed 28 documents focusing on nutrition-related misinformation on social networks. Instagram (50 %) and YouTube (39.28 %) were identified as the most prevalent platforms for spreading such content, followed by TikTok (5.13 %) and Twitter (10.72 %). Over 62 % of the reviewed studies addressed misinformation linked to miracle diets, often associated with orthorexia (14.28 %) and COVID-19 (14.28 %). These diets frequently included unverified claims of rapid health improvements. Notably, credible nutrition content was predominantly shared by healthcare professionals and academic organizations, highlighting their key role in fight against misinformation. misinformation about nutrition on social networks is a growing public health concern. Public health institutions must implement strategies to improve digital literacy and provide tools for assessing information credibility. Healthcare professionals should leverage social media to disseminate evidence-based knowledge, counteracting the influence of unreliable sources. Collaborative efforts are essential to ensure social networks serve as platforms for reliable health promotion and education.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
站在巨人的肩膀上完成签到,获得积分10
刚刚
科研蜗牛完成签到,获得积分10
刚刚
前进大佬完成签到 ,获得积分20
刚刚
是小越啊发布了新的文献求助10
1秒前
科研通AI5应助法侣采纳,获得10
2秒前
wsfwsf01完成签到,获得积分10
4秒前
KerwinLLL完成签到,获得积分10
4秒前
SciGPT应助DORA采纳,获得10
5秒前
sxm1004完成签到,获得积分10
5秒前
哆啦A梦完成签到,获得积分10
6秒前
很傻的狗完成签到,获得积分10
6秒前
大个应助是小越啊采纳,获得10
7秒前
明亮的咖啡豆完成签到,获得积分10
7秒前
Ava应助啊嘞嘞采纳,获得10
7秒前
ltt发布了新的文献求助10
8秒前
9秒前
大模型应助自信念云采纳,获得10
10秒前
10秒前
美丽的宝马完成签到,获得积分10
10秒前
李健应助胡锦川采纳,获得10
10秒前
JAJ完成签到 ,获得积分10
11秒前
ltt完成签到,获得积分10
14秒前
自信念云完成签到,获得积分10
16秒前
夏沫完成签到,获得积分10
16秒前
SAL完成签到,获得积分10
16秒前
zhangxy完成签到,获得积分10
17秒前
榆木桢楠完成签到,获得积分10
17秒前
18秒前
机灵夜云完成签到,获得积分20
18秒前
18秒前
欣喜的代容完成签到 ,获得积分10
19秒前
19秒前
19秒前
Lucas应助dingdang采纳,获得10
20秒前
苏易简完成签到,获得积分10
20秒前
21秒前
杜仲应助Miss采纳,获得10
22秒前
22秒前
22秒前
正直的跳跳糖完成签到 ,获得积分10
22秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Risks and Security of Internet and Systems CRiSIS 2024 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828033
求助须知:如何正确求助?哪些是违规求助? 3370323
关于积分的说明 10462767
捐赠科研通 3090268
什么是DOI,文献DOI怎么找? 1700299
邀请新用户注册赠送积分活动 817812
科研通“疑难数据库(出版商)”最低求助积分说明 770442