Diagnostic Captioning by Cooperative Task Interactions and Sample-Graph Consistency

计算机科学 隐藏字幕 一致性(知识库) 人工智能 样品(材料) 任务(项目管理) 图形 自然语言处理 机器学习 模式识别(心理学) 理论计算机科学 图像(数学) 色谱法 经济 化学 管理
作者
Zhanyu Wang,Lei Wang,Xiu Li,Luping Zhou
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (8): 6585-6598 被引量:1
标识
DOI:10.1109/tpami.2025.3562866
摘要

Radiographic images are similar to each other, making it challenging for diagnostic captioning to narrate fine-grained visual differences of clinical importance. In this paper, we propose a self-boosting framework integrating two novel strategies to learn tightly correlated image and text features for diagnostic captioning. The first strategy explicitly aligns image and text features through training an auxiliary task of image-text matching (ITM) jointly with the main task of report generation (RG) as two branches of a network model. The ITM branch explicitly learns image-text alignment and provides highly correlated visual and textual features for the RG branch to generate high-quality reports. The high-quality reports generated by RG branch, in turn, are utilized as additional harder negative samples to push the ITM branch to evolve towards better image-text alignment. These two branches help improve each other progressively, so that the whole model is self-boosted without requiring external resources. The second strategy aligns image-sample space and report-sample space to achieve consistent image and text feature embeddings. To achieve this, the sample graph of the embedded ground-truth reports is built and used as the target to train the sample graph of the embedded images so that the fine discrepancy in the ground-truth reports could be captured by the learned visual feature embeddings. Our proposed framework demonstrates its superiority on two medical report generation benchmarks, including the largest dataset MIMIC-CXR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坚强不言发布了新的文献求助10
刚刚
1秒前
1秒前
开放以蓝发布了新的文献求助20
1秒前
QQLL发布了新的文献求助10
2秒前
小鱼儿发布了新的文献求助10
3秒前
czz2007发布了新的文献求助10
3秒前
xxfsx应助abudu采纳,获得10
3秒前
科目三应助WANG同学采纳,获得10
3秒前
JasonYang应助管管采纳,获得20
4秒前
大个应助阔达的紫烟采纳,获得10
4秒前
Owen应助aifd采纳,获得10
5秒前
wanna发布了新的文献求助10
5秒前
无知者海生完成签到 ,获得积分10
5秒前
5秒前
小聪向前冲完成签到,获得积分10
5秒前
无花果应助图南采纳,获得30
5秒前
6秒前
难过的谷云完成签到,获得积分10
6秒前
老马完成签到,获得积分10
7秒前
香蕉觅云应助华北走地鸡采纳,获得10
7秒前
ding应助wyb采纳,获得10
7秒前
mtdbxxx发布了新的文献求助10
7秒前
hvgjgfjhgjh发布了新的文献求助10
8秒前
小马甲应助万万没想到采纳,获得10
9秒前
科目三应助谢尔顿采纳,获得10
9秒前
喔喔完成签到,获得积分10
9秒前
闲之野鹤发布了新的文献求助10
10秒前
10秒前
11秒前
柳扬完成签到,获得积分20
11秒前
科研通AI2S应助马才学采纳,获得10
11秒前
图南完成签到,获得积分20
11秒前
乐乐乐乐乐完成签到,获得积分10
11秒前
花花123发布了新的文献求助10
12秒前
酷波er应助来日方长采纳,获得10
12秒前
开放明雪完成签到,获得积分10
12秒前
万能图书馆应助磕盐驴采纳,获得10
12秒前
13秒前
逯景宇完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5429550
求助须知:如何正确求助?哪些是违规求助? 4543084
关于积分的说明 14184733
捐赠科研通 4461046
什么是DOI,文献DOI怎么找? 2445986
邀请新用户注册赠送积分活动 1437170
关于科研通互助平台的介绍 1414225