清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Discrimination of Benign and Malignant Thyroid Nodules through Comparative Analyses of Human Saliva Samples via Metabolomics and Deep-Learning-Guided Label-free SERS

甲状腺结节 甲状腺 唾液 结核(地质) 医学 人工智能 病理 内科学 生物 计算机科学 古生物学
作者
Jia‐Wei Tang,Jing-Yi Mou,Jie Chen,Yuan Quan,Xin‐Ru Wen,Qinghua Liu,Zhao Liu,Liang Wang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c20503
摘要

Thyroid nodules are a very common entity. The overall prevalence in the populace is estimated to be around 65–68%, among which a small portion (less than 5%) is malignant (cancerous). Therefore, it is important to discriminate benign thyroid nodules from malignant thyroid nodules. In this study, an equal number of participants with benign and malignant thyroid nodules (N = 10/group) were recruited. Saliva samples were collected from each participant, and SERS spectra were acquired, followed by validation using a metabolomics approach. An additional equal number of patients (N = 40/group) were recruited to construct diagnostic models. The performance of various machine learning (ML) algorithms was assessed using multiple evaluation metrics. Finally, the reliability of the optimal model was tested using blind test data (N = 10/group for benign and malignant thyroid nodules). The results showed a consistent trend between the SERS metabolic profile and the metabolites identified through MS analysis. The Multi-ResNet algorithm was optimal, achieving a 95% accuracy in sample discrimination. Additionally, blind test data sets yielded an overall accuracy of 83%. In summary, the deep-learning-guided SERS technique holds great potential in the accurate discrimination of benign and malignant thyroid nodules via human saliva samples, which facilitates the noninvasive diagnosis of malignant thyroid nodules in clinical settings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Microbiota完成签到,获得积分10
11秒前
18秒前
lily完成签到 ,获得积分10
31秒前
back you up完成签到,获得积分0
38秒前
WSZXQ完成签到,获得积分10
53秒前
娟娟加油完成签到 ,获得积分10
1分钟前
1分钟前
陈_Ccc完成签到 ,获得积分10
1分钟前
1分钟前
范振杰发布了新的文献求助10
1分钟前
马婷婷发布了新的文献求助10
1分钟前
Rita应助范振杰采纳,获得10
1分钟前
Owen应助Bryan采纳,获得10
1分钟前
Tina完成签到 ,获得积分10
1分钟前
雪花完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
清秀的怀蕊完成签到 ,获得积分10
1分钟前
203040发布了新的文献求助10
1分钟前
迷路向松完成签到,获得积分10
1分钟前
huhu发布了新的文献求助10
1分钟前
Akim应助xun采纳,获得10
2分钟前
2分钟前
北斗HH完成签到,获得积分10
2分钟前
鸠摩智完成签到,获得积分10
2分钟前
范振杰完成签到,获得积分20
2分钟前
2分钟前
xun发布了新的文献求助10
2分钟前
缥缈火车完成签到,获得积分10
2分钟前
闪闪的谷梦完成签到 ,获得积分10
2分钟前
wanci应助xun采纳,获得10
2分钟前
ys1008完成签到,获得积分10
2分钟前
真的OK完成签到,获得积分10
2分钟前
Drizzle完成签到,获得积分10
2分钟前
文献蚂蚁完成签到,获得积分10
2分钟前
洋芋饭饭完成签到,获得积分10
2分钟前
2分钟前
haralee完成签到 ,获得积分10
3分钟前
微卫星不稳定完成签到 ,获得积分10
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795624
求助须知:如何正确求助?哪些是违规求助? 3340665
关于积分的说明 10300948
捐赠科研通 3057168
什么是DOI,文献DOI怎么找? 1677539
邀请新用户注册赠送积分活动 805449
科研通“疑难数据库(出版商)”最低求助积分说明 762626