Coupled adversarial learning for fusion classification of hyperspectral and LiDAR data

高光谱成像 激光雷达 计算机科学 判别式 特征(语言学) 人工智能 串联(数学) 模式识别(心理学) 遥感 地质学 数学 语言学 组合数学 哲学
作者
Ting Lu,Kexin Ding,Wei Fu,Shutao Li,Anjing Guo
出处
期刊:Information Fusion [Elsevier]
卷期号:93: 118-131 被引量:109
标识
DOI:10.1016/j.inffus.2022.12.020
摘要

Hyperspectral image (HSI) provides rich spectral–spatial information and the light detection and ranging (LiDAR) data reflect the elevation information, which can be jointly exploited for better land-cover classification. However, due to different imaging mechanisms, HSI and LiDAR data always present significant image difference, current pixel-wise feature fusion classification methods relying on concatenation or weighted fusion are not effective. To achieve accurate classification result, it is important to extract and fuse similar high-order semantic information and complementary discriminative information contained in multimodal data. In this paper, we propose a novel coupled adversarial learning based classification (CALC) method for fusion classification of HSI and LiDAR data. In specific, a coupled adversarial feature learning (CAFL) sub-network is first trained, to effectively learn the high-order semantic features from HSI and LiDAR data in an unsupervised manner. On one hand, the proposed CAFL sub-network establishes an adversarial game between dual generators and discriminators, so that the learnt features can preserve detail information in HSI and LiDAR data, respectively. On the other hand, by designing weight-sharing and linear fusion structure in the dual generators, we can simultaneously extract similar high-order semantic information and modal-specific complementary information. Meanwhile, a supervised multi-level feature fusion classification (MFFC) sub-network is trained, to further improve the classification performance via adaptive probability fusion strategy. In brief, the low-level, mid-level and high-level features learnt by the CAFL sub-network lead to multiple class estimation probabilities, which are then adaptively combined to generate a final accurate classification result. Both the CAFL and MFFC sub-networks are collaboratively trained by optimizing a designed joint loss function, which consists of unsupervised adversarial loss and supervised classification loss. Overall, by optimizing the joint loss function, the proposed CALC network is pushed to learn highly discriminative fusion features from multimodal data, leading to higher classification accuracies. Extensive experiments on three well-known HSI and LiDAR data sets demonstrate the superior classification performance by the proposed CALC method than several state-of-the-art methods. The source code of the proposed method will be made publicly available at https://github.com/Ding-Kexin/CALC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
双楠完成签到,获得积分10
1秒前
yyyyy发布了新的文献求助10
1秒前
1秒前
可乐完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
理想三寻发布了新的文献求助10
4秒前
完美世界应助123Y采纳,获得10
4秒前
4秒前
6秒前
Arimson完成签到,获得积分10
7秒前
朴素的乐枫完成签到,获得积分20
7秒前
vince发布了新的文献求助30
7秒前
xyy102发布了新的文献求助10
7秒前
科研通AI6应助Huzhu采纳,获得20
8秒前
帝休完成签到,获得积分10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
酷炫的海之完成签到,获得积分10
10秒前
10秒前
10秒前
z_king_d_23发布了新的文献求助10
11秒前
hx完成签到 ,获得积分10
12秒前
Lexi完成签到,获得积分10
13秒前
13秒前
小蘑菇应助机智的觅风采纳,获得100
15秒前
852应助高挑的雨雪采纳,获得10
15秒前
小小米发布了新的文献求助10
15秒前
vince完成签到,获得积分10
15秒前
15秒前
安详的沛菡完成签到,获得积分10
15秒前
15秒前
16秒前
危机的向日葵完成签到 ,获得积分10
17秒前
109902RQ发布了新的文献求助10
17秒前
18秒前
小方啦啦啦完成签到,获得积分10
19秒前
CodeCraft应助Sarah采纳,获得50
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478104
求助须知:如何正确求助?哪些是违规求助? 4579904
关于积分的说明 14371253
捐赠科研通 4508112
什么是DOI,文献DOI怎么找? 2470442
邀请新用户注册赠送积分活动 1457309
关于科研通互助平台的介绍 1431249