Diabetic Retinopathy (DR) Image Synthesis Using DCGAN and Classification of DR Using Transfer Learning Approaches

计算机科学 人工智能 概化理论 失明 糖尿病性视网膜病变 深度学习 验光服务 医学 数学 糖尿病 统计 内分泌学
作者
Yerrarapu Sravani Devi,S. Phani Kumar
出处
期刊:International Journal of Image and Graphics [World Scientific]
卷期号:24 (05) 被引量:2
标识
DOI:10.1142/s0219467823400090
摘要

Diabetic retinopathy (DR) refers to a diabetes complexity that immensely impacts the eyes. This is classified into 5 various stages of the severity in accordance with the international convention. Despite that, optimization of a grading model to have a robust generalizability needs a huge number of balanced training data that is very complicated to gather, especially for greater levels of severity. A vast amount of medical data is complex and has a very high-priced method which requires cooperation between the clinics and researchers. The issue is usually attempted to be figured out with the usage of the traditional methods of data augmentation by making certain changes to images of retina dataset for instance rotation, cropping, size and zooming. In this suggested paper, the latest methods or techniques of data augmentation is exhibited which is called as deep convolutional generative adversial network (DC-GAN) and variational auto encoders (VAE). This is a particular method which is responsible for the production of artificial medical images. In addition to this, to improve DR, we can also take the aid of the classification models which are resnet50, densenet201, InceptionV3 and VGG19 for the purpose of classification of the eye related diseases. The proposed method is depicted on the Asia Pacific Tele-Ophthalmology Society (APTOS)-Blindness dataset. First, the present-day online data augmentation techniques have been utilized, and the artificial images of retina are produced by the ease of DCGAN. Then, a method of classifying is used for both techniques. Ultimately, after the method training which is done by using the real & synthetic clinical images and the outcome exhibits which the proposed model determines every stage or phase of DR and achieve the accuracy of 98.66% with using of ResNet-50 which is contrary to the current existing techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助李佳采纳,获得10
1秒前
nancy_liang完成签到 ,获得积分10
1秒前
science完成签到,获得积分0
2秒前
AJ发布了新的文献求助100
4秒前
安详晓亦发布了新的文献求助10
4秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
胖丁应助帅帅子采纳,获得20
8秒前
害怕的又晴完成签到,获得积分10
8秒前
DeafCrow发布了新的文献求助10
9秒前
蓝色天空完成签到,获得积分10
9秒前
彭于晏应助震动的强炫采纳,获得10
9秒前
耍酷的大门应助gumiho1007采纳,获得10
10秒前
smile发布了新的文献求助10
10秒前
FashionBoy应助甜美靖雁采纳,获得10
11秒前
科研通AI6应助谢晓东采纳,获得10
11秒前
隐形曼青应助糖糖糖唐采纳,获得10
13秒前
四福祥驳回了852应助
13秒前
JamesPei应助kk子采纳,获得10
13秒前
14秒前
14秒前
健康的妙菱完成签到,获得积分10
14秒前
牧妙芹完成签到,获得积分10
14秒前
李健应助诚心凌珍采纳,获得10
15秒前
传奇3应助小困采纳,获得10
16秒前
我的光完成签到,获得积分20
16秒前
zhaozhao发布了新的文献求助30
17秒前
顾矜应助苏翰英采纳,获得10
17秒前
找文献呢完成签到,获得积分10
18秒前
柴桑青木应助蘑菇采纳,获得10
19秒前
19秒前
鑫酱完成签到,获得积分10
19秒前
19秒前
19秒前
zzzkkk完成签到,获得积分10
20秒前
gabee完成签到 ,获得积分10
20秒前
LM完成签到,获得积分10
21秒前
lelelele完成签到,获得积分20
21秒前
gf完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 3000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Metals, Minerals, and Society 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4282588
求助须知:如何正确求助?哪些是违规求助? 3810772
关于积分的说明 11936904
捐赠科研通 3457250
什么是DOI,文献DOI怎么找? 1896009
邀请新用户注册赠送积分活动 944874
科研通“疑难数据库(出版商)”最低求助积分说明 848649