An artificial intelligence-based model for predicting reproductive toxicity of bisphenol analogues mixtures to the rotifer Brachionus calyciflorus

萼花臂尾轮虫 轮虫 数量结构-活动关系 水生毒理学 毒性 生殖毒性 生物系统 双酚A 人工神经网络 生物 化学 人工智能 计算机科学 生态学 有机化学 生物信息学 环氧树脂
作者
Yilin Wang,Juntao Fan,Fen Guo,Songyan Yu,Zhenguang Yan
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:929: 172537-172537 被引量:2
标识
DOI:10.1016/j.scitotenv.2024.172537
摘要

The joint toxicity effects of mixtures, particularly reproductive toxicity, one of the main causes of aquatic ecosystem degradation, are often overlooked as it is impractical to test all mixtures. This study developed and evaluated three types of models aiming to predict the concentration response curve concerning the joint reproductive toxicity of mixtures of three bisphenol analogues (BPA, BPF, BPAF) on the rotifer Brachionus calyciflorus: concentration addition (CA) and independent action (IA). Deep neural network models using the ratios of chemicals in mixtures as input variables (DNN-Ratio). Additionally, the quantitative structure-activity relationship (QSAR) theory was employed as a basis to compute mixture descriptors and combined them with DNN to develop DNN-QSAR models. Descriptors related to molecular mass were found to be of greater importance and exhibited a proportional relationship with toxic effects. The results indicate that the range of correlation coefficients (R2) between predicted and measured values for various mixture rays by CA and IA models is 0.372 to 0.974 and − 0.970 to 0.586, respectively. The R2 values for DNN-Ratio and DNN-QSAR were 0.841 to 0.984 and 0.834 to 0.991, respectively, demonstrating that models developed by DNN significantly outperform traditional models in predicting the joint toxicity of mixtures. Furthermore, DNN-QSAR not only predicts mixture toxicity but also provides accurate toxicity predictions for BPA, BPF, and BPAF, with R2 values of 0.990, 0.616, and 0.887, respectively, while DNN-Ratio yields values of 0.920, 0.355, and − 0.495. The study also found that the joint effects of mixtures are primarily influenced by the total concentration of the mixtures, and an increase in total concentration shifts the joint effects towards addition. This study introduces a novel approach to predict joint toxicity and analyze the influencing factors of joint effects, providing a more comprehensive assessment of the ecological risk posed by mixtures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xzy998应助jackycas采纳,获得10
2秒前
LLxiaolong完成签到,获得积分10
3秒前
姜太公发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
KAWHI发布了新的文献求助10
9秒前
11秒前
科研通AI5应助复杂念梦采纳,获得10
11秒前
lucky珠完成签到 ,获得积分10
14秒前
14秒前
夏雪冬花发布了新的文献求助10
15秒前
17秒前
鹿c3完成签到,获得积分10
17秒前
19秒前
姜太公完成签到,获得积分10
19秒前
hades完成签到 ,获得积分10
19秒前
顾矜应助夏雪冬花采纳,获得10
19秒前
Akim应助儒雅沛凝采纳,获得10
20秒前
VvV完成签到,获得积分10
20秒前
啊露完成签到,获得积分10
20秒前
摩诃萨完成签到,获得积分10
20秒前
ARIA完成签到 ,获得积分10
21秒前
乐正熠彤完成签到,获得积分10
21秒前
22秒前
萧布发布了新的文献求助10
22秒前
23秒前
KAWHI完成签到,获得积分10
23秒前
风中亦玉发布了新的文献求助10
24秒前
研友_VZG7GZ应助tina采纳,获得20
25秒前
dddd发布了新的文献求助10
26秒前
顺遂完成签到,获得积分10
26秒前
Jackson333完成签到,获得积分10
26秒前
小付发布了新的文献求助10
28秒前
29秒前
ZX0501发布了新的文献求助200
31秒前
夏雪冬花完成签到,获得积分20
31秒前
32秒前
32秒前
Zzz完成签到 ,获得积分10
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779439
求助须知:如何正确求助?哪些是违规求助? 3324973
关于积分的说明 10220672
捐赠科研通 3040111
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522