过电位
析氧
电化学
化学工程
材料科学
催化作用
分解水
电解
电解水
溶解
离子交换
密度泛函理论
电化学能量转换
无机化学
电极
离子
化学
物理化学
电解质
计算化学
生物化学
有机化学
工程类
光催化
作者
Fuli Wang,Jin‐Long Tan,Zheng‐Yang Jin,Chao‐Yue Gu,Qian‐Xi Lv,Yiwen Dong,Ren‐Qing Lv,Bin Dong,Yong‐Ming Chai
出处
期刊:Small
[Wiley]
日期:2024-04-12
卷期号:20 (33): e2310064-e2310064
被引量:13
标识
DOI:10.1002/smll.202310064
摘要
Abstract Limited by the strong oxidation environment and sluggish reconstruction process in oxygen evolution reaction (OER), designing rapid self‐reconstruction with high activity and stability electrocatalysts is crucial to promoting anion exchange membrane (AEM) water electrolyzer. Herein, trace Fe/S‐modified Ni oxyhydroxide (Fe/S‐NiOOH/NF) nanowires are constructed via a simple in situ electrochemical oxidation strategy based on precipitation‐dissolution equilibrium. In situ characterization techniques reveal that the successful introduction of Fe and S leads to lattice disorder and boosts favorable hydroxyl capture, accelerating the formation of highly active γ‐NiOOH. The Density Functional Theory (DFT) calculations have also verified that the incorporation of Fe and S optimizes the electrons redistribution and the d‐band center, decreasing the energy barrier of the rate‐determining step ( * O→ * OOH). Benefited from the unique electronic structure and intermediate adsorption, the Fe/S‐NiOOH/NF catalyst only requires the overpotential of 345 mV to reach the industrial current density of 1000 mA cm −2 for 120 h. Meanwhile, assembled AEM water electrolyzer (Fe/S‐NiOOH//Pt/C‐60 °C) can deliver 1000 mA cm −2 at a cell voltage of 2.24 V, operating at the average energy efficiency of 71% for 100 h. In summary, this work presents a rapid self‐reconstruction strategy for high‐performance AEM electrocatalysts for future hydrogen economy.
科研通智能强力驱动
Strongly Powered by AbleSci AI