Potential Multidisciplinary Use of Large Language Models for Addressing Queries in Cardio‐Oncology

医学 北京 多学科方法 中国 图书馆学 家庭医学 地理 政治学 计算机科学 考古 法学
作者
Pengfei Li,Xuejuan Zhang,Erjia Zhu,Shijun Yu,Bin Sheng,Yih‐Chung Tham,Tien Yin Wong,Hongwei Ji
出处
期刊:Journal of the American Heart Association [Wiley]
卷期号:13 (6) 被引量:3
标识
DOI:10.1161/jaha.123.033584
摘要

n the crossroads of digital health and education, large language models (LLMs) emerge as tools with great potential. 1Trained on expansive textual data sets, these state-of-the-art artificial intelligence models can generate multidisciplinary content, answer intricate queries, and accelerate information delivery. 1articularly in the field of cardio-oncology, which combines cardiac and oncological expertise, LLMs have the potential to provide valuable insights to specialists like cardiologists and oncologists. 2This is useful in situations in which standard guidelines are not immediately available or when there is a need to combine a vast amount of interdisciplinary information.However, the performances of LLMs in this context remains largely unknown.This study aims to benchmark these state-of-the-art artificial intelligence models in their ability to handle the interdisciplinary queries inherent in cardio-oncology, where integrative insights from cardiology and oncology are crucial.The data that support the findings of this study are available from the last author upon reasonable request.Our study, conducted between October 02, 2023 and October 12, 2023 compiled 25 questions according to the 2022 European Society of Cardiology guideline on cardio-oncology 3 (Table ).Each query was individually and independently posed to 5 LLMs: ChatGPT-3.5,ChatGPT-4.0,Bard, Llama 2, and Claude 2, generating a total of 25 responses per chatbot.We format all generated responses as plain text and stripped of any identifying details (eg, remarks like "I'm not a doctor" from ChatGPT).Responses were randomly shuffled within their respective question sets, ensuring that the reviewers remained unaware of LLMspecific responses.Two experienced attending-level physicians independently assessed the responses in 5 separate rounds, each conducted on a distinct day, with an overnight washout period to minimize memory bias (Table ).This study did not involve human subjects; institutional review board approval and informed consent were waived.The mean±SD of the word count was 386±91 for ChatGPT-3.5,386±96 for ChatGPT-4.0,340±78 for Google Bard, 360±96 for Meta Llama 2, and 203±27 for Anthropic Claude 2 (P<0.001).The preliminary results indicated that ChatGPT-4 provided 17 of 25 (68%) appropriate responses, followed by Bard, Claude 2, and ChatGPT-3.5 with 13 of 25 (52%), and Llama 2 with 12 of 25 (48%; P=0.653).A notable area of concern was that in the treatment and prevention domain; all 5 LLM-Chatbots earned either borderline or poor
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助苹果果汁采纳,获得10
3秒前
xx发布了新的文献求助10
4秒前
PN_Allen完成签到 ,获得积分10
5秒前
6秒前
6秒前
Nancy发布了新的文献求助10
12秒前
一方通行完成签到,获得积分10
14秒前
16秒前
17秒前
dhua完成签到,获得积分20
17秒前
qiaoshan_Jason完成签到,获得积分10
18秒前
Raymond发布了新的文献求助10
18秒前
18秒前
FOX完成签到,获得积分10
22秒前
苹果果汁发布了新的文献求助10
22秒前
电击小子发布了新的文献求助10
22秒前
lyw完成签到 ,获得积分10
23秒前
两袖清风完成签到 ,获得积分10
23秒前
甜美无剑完成签到,获得积分10
23秒前
火星上以柳完成签到,获得积分10
24秒前
王禹涵完成签到 ,获得积分10
25秒前
ding完成签到,获得积分20
28秒前
电击小子完成签到,获得积分10
30秒前
32秒前
xx完成签到 ,获得积分20
33秒前
zhuzhu发布了新的文献求助10
37秒前
大模型应助苹果果汁采纳,获得10
38秒前
NexusExplorer应助Steven采纳,获得10
39秒前
科研通AI2S应助woxin采纳,获得10
39秒前
39秒前
科研通AI5应助七喜采纳,获得10
41秒前
CipherSage应助kai采纳,获得10
42秒前
dadad发布了新的文献求助10
43秒前
Wtony完成签到 ,获得积分10
43秒前
小猪吹风完成签到 ,获得积分10
46秒前
48秒前
FashionBoy应助秋言采纳,获得10
48秒前
火星上的飞兰完成签到,获得积分10
49秒前
耶路生完成签到,获得积分10
52秒前
Shu发布了新的文献求助10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324313
关于积分的说明 10217843
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758401