It’s All in the Embedding! Fake News Detection Using Document Embeddings

计算机科学 社会化媒体 误传 假新闻 造谣 新闻 数据科学 人工智能 背景(考古学) 舆论 互联网隐私 万维网 政治学 政治 计算机安全 法学 古生物学 生物
作者
Ciprian-Octavian Truică,Elena-Simona Apostol
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:11 (3): 508-508 被引量:42
标识
DOI:10.3390/math11030508
摘要

With the current shift in the mass media landscape from journalistic rigor to social media, personalized social media is becoming the new norm. Although the digitalization progress of the media brings many advantages, it also increases the risk of spreading disinformation, misinformation, and malformation through the use of fake news. The emergence of this harmful phenomenon has managed to polarize society and manipulate public opinion on particular topics, e.g., elections, vaccinations, etc. Such information propagated on social media can distort public perceptions and generate social unrest while lacking the rigor of traditional journalism. Natural Language Processing and Machine Learning techniques are essential for developing efficient tools that can detect fake news. Models that use the context of textual data are essential for resolving the fake news detection problem, as they manage to encode linguistic features within the vector representation of words. In this paper, we propose a new approach that uses document embeddings to build multiple models that accurately label news articles as reliable or fake. We also present a benchmark on different architectures that detect fake news using binary or multi-labeled classification. We evaluated the models on five large news corpora using accuracy, precision, and recall. We obtained better results than more complex state-of-the-art Deep Neural Network models. We observe that the most important factor for obtaining high accuracy is the document encoding, not the classification model's complexity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
FashionBoy应助江峰采纳,获得10
刚刚
1秒前
1秒前
蛎卡奔发布了新的文献求助10
1秒前
sweety发布了新的文献求助10
1秒前
1秒前
Hello应助荷月初六采纳,获得10
1秒前
李健应助阿秧采纳,获得10
2秒前
调皮小土豆完成签到,获得积分10
3秒前
3秒前
ryan发布了新的文献求助10
3秒前
忧虑的访梦完成签到 ,获得积分10
3秒前
无语的惜芹完成签到,获得积分10
3秒前
元元完成签到,获得积分10
3秒前
跳跃的惮发布了新的文献求助10
4秒前
gao完成签到,获得积分10
4秒前
善学以致用应助坚强不言采纳,获得10
5秒前
5秒前
狗蛋发布了新的文献求助10
5秒前
四月发布了新的文献求助10
5秒前
5秒前
orixero应助飞宇采纳,获得10
5秒前
火星上初翠完成签到,获得积分10
6秒前
小满完成签到,获得积分10
6秒前
秀丽远航发布了新的文献求助10
6秒前
6秒前
zheng发布了新的文献求助10
6秒前
Enri发布了新的文献求助10
6秒前
6秒前
光电彭于晏完成签到,获得积分10
7秒前
7秒前
sunhealth完成签到,获得积分10
7秒前
hao发布了新的文献求助10
7秒前
9秒前
cun关闭了cun文献求助
9秒前
HEIKU应助ryan采纳,获得10
9秒前
小满发布了新的文献求助30
9秒前
10秒前
10秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785258
求助须知:如何正确求助?哪些是违规求助? 3330815
关于积分的说明 10248481
捐赠科研通 3046259
什么是DOI,文献DOI怎么找? 1671915
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759868