Predicting metabolite–disease associations based on auto-encoder and non-negative matrix factorization

代谢物 非负矩阵分解 计算机科学 编码器 模式识别(心理学) 人工智能 特征向量 矩阵分解 特征(语言学) 数据挖掘 机器学习 计算生物学 生物 生物化学 物理 操作系统 哲学 量子力学 特征向量 语言学
作者
Hongtao Gao,Jianqiang Sun,Yukun Wang,Yuer Lu,Liyu Liu,Qi Zhao,Jianwei Shuai
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (5) 被引量:72
标识
DOI:10.1093/bib/bbad259
摘要

Abstract Metabolism refers to a series of orderly chemical reactions used to maintain life activities in organisms. In healthy individuals, metabolism remains within a normal range. However, specific diseases can lead to abnormalities in the levels of certain metabolites, causing them to either increase or decrease. Detecting these deviations in metabolite levels can aid in diagnosing a disease. Traditional biological experiments often rely on a lot of manpower to do repeated experiments, which is time consuming and labor intensive. To address this issue, we develop a deep learning model based on the auto-encoder and non-negative matrix factorization named as MDA-AENMF to predict the potential associations between metabolites and diseases. We integrate a variety of similarity networks and then acquire the characteristics of both metabolites and diseases through three specific modules. First, we get the disease characteristics from the five-layer auto-encoder module. Later, in the non-negative matrix factorization module, we extract both the metabolite and disease characteristics. Furthermore, the graph attention auto-encoder module helps us obtain metabolite characteristics. After obtaining the features from three modules, these characteristics are merged into a single, comprehensive feature vector for each metabolite–disease pair. Finally, we send the corresponding feature vector and label to the multi-layer perceptron for training. The experiment demonstrates our area under the receiver operating characteristic curve of 0.975 and area under the precision–recall curve of 0.973 in 5-fold cross-validation, which are superior to those of existing state-of-the-art predictive methods. Through case studies, most of the new associations obtained by MDA-AENMF have been verified, further highlighting the reliability of MDA-AENMF in predicting the potential relationships between metabolites and diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lizhiqian2024发布了新的文献求助10
刚刚
勤恳的宛菡完成签到,获得积分10
1秒前
YZJing完成签到,获得积分10
2秒前
鬼才之眼完成签到 ,获得积分10
3秒前
KKKKKKK完成签到 ,获得积分10
5秒前
clock完成签到 ,获得积分10
6秒前
凯撒的归凯撒完成签到 ,获得积分10
7秒前
11秒前
12秒前
火之高兴完成签到 ,获得积分10
13秒前
tomorrow完成签到 ,获得积分10
13秒前
奈何桥完成签到,获得积分10
14秒前
33猫完成签到 ,获得积分10
15秒前
lizhiqian2024发布了新的文献求助10
17秒前
认真丹亦完成签到 ,获得积分10
18秒前
袁翰将军完成签到 ,获得积分10
18秒前
甜甜圈发布了新的文献求助10
19秒前
槿裡完成签到 ,获得积分10
24秒前
梓凝完成签到 ,获得积分10
24秒前
手帕很忙完成签到,获得积分10
25秒前
27秒前
大大彬完成签到 ,获得积分10
30秒前
充电宝应助牧百川采纳,获得10
31秒前
janice116688完成签到,获得积分10
31秒前
KaiZI完成签到 ,获得积分10
33秒前
doclarrin完成签到 ,获得积分10
35秒前
科研通AI5应助lizhiqian2024采纳,获得10
36秒前
NexusExplorer应助lizhiqian2024采纳,获得10
36秒前
北笙完成签到 ,获得积分10
36秒前
青山完成签到 ,获得积分10
37秒前
caisongliang完成签到,获得积分10
37秒前
不想长大完成签到 ,获得积分10
39秒前
单薄熊猫完成签到,获得积分10
40秒前
yaya完成签到 ,获得积分10
43秒前
刘七七努力搞科研完成签到 ,获得积分10
45秒前
尊敬的凝丹完成签到 ,获得积分10
46秒前
linfordlu完成签到,获得积分0
46秒前
共享精神应助科研通管家采纳,获得10
49秒前
Jasper应助科研通管家采纳,获得10
49秒前
科研通AI2S应助科研通管家采纳,获得10
49秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801027
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329710
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726