Self-supervised Trajectory Representation Learning with Temporal Regularities and Travel Semantics

弹道 计算机科学 语义学(计算机科学) 代表(政治) 人工智能 聚类分析 特征学习 编码器 模式识别(心理学) 物理 天文 政治 政治学 法学 程序设计语言 操作系统
作者
Jiawei Jiang,Dayan Pan,Houxing Ren,Xiaohan Jiang,Chao Li,Jingyuan Wang
标识
DOI:10.1109/icde55515.2023.00070
摘要

Trajectory Representation Learning (TRL) is a powerful tool for spatial-temporal data analysis and management. TRL aims to convert complicated raw trajectories into low-dimensional representation vectors, which can be applied to various downstream tasks, such as trajectory classification, clustering, and similarity computation. Existing TRL works usually treat trajectories as ordinary sequence data, while some important spatial-temporal characteristics, such as temporal regularities and travel semantics, are not fully exploited. To fill this gap, we propose a novel Self-supervised trajectory representation learning framework with TemporAl Regularities and Travel semantics, namely START. The proposed method consists of two stages. The first stage is a Trajectory Pattern-Enhanced Graph Attention Network (TPE-GAT), which converts the road network features and travel semantics into representation vectors of road segments. The second stage is a Time-Aware Trajectory Encoder (TAT-Enc), which encodes representation vectors of road segments in the same trajectory as a trajectory representation vector, meanwhile incorporating temporal regularities with the trajectory representation. Moreover, we also design two self-supervised tasks, i.e., span-masked trajectory recovery and trajectory contrastive learning, to introduce spatial-temporal characteristics of trajectories into the training process of our START framework. The effectiveness of the proposed method is verified by extensive experiments on two large-scale real-world datasets for three downstream tasks. The experiments also demonstrate that our method can be transferred across different cities to adapt heterogeneous trajectory datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
央央发布了新的文献求助10
4秒前
5秒前
23完成签到,获得积分10
7秒前
FashionBoy应助凯文采纳,获得10
7秒前
opticsLM完成签到,获得积分10
7秒前
7秒前
wary发布了新的文献求助10
8秒前
科目三应助卢雅妮采纳,获得10
8秒前
10秒前
怡然铃铛发布了新的文献求助10
10秒前
ZHEN发布了新的文献求助10
10秒前
优秀绮彤发布了新的文献求助10
10秒前
杨奇定完成签到,获得积分20
12秒前
核桃发布了新的文献求助10
12秒前
猪猪hero应助nico采纳,获得10
13秒前
jenningseastera应助nico采纳,获得10
13秒前
酷波er应助小小斌采纳,获得10
14秒前
000完成签到,获得积分10
16秒前
16秒前
18秒前
优秀绮彤完成签到,获得积分10
20秒前
可爱的函函应助nnbn采纳,获得10
21秒前
淡淡书白完成签到,获得积分10
22秒前
hui完成签到,获得积分10
23秒前
24秒前
磁带机完成签到,获得积分10
24秒前
26秒前
27秒前
jx000811完成签到,获得积分10
28秒前
卢雅妮发布了新的文献求助10
29秒前
阿六发布了新的文献求助10
30秒前
31秒前
32秒前
HJJHJH发布了新的文献求助30
33秒前
璇儿发布了新的文献求助30
33秒前
酷波er应助开心就好采纳,获得10
35秒前
研友_VZG7GZ应助栗栗栗知采纳,获得30
35秒前
空白完成签到,获得积分10
37秒前
高分求助中
Mass producing individuality 600
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Oxford Handbook of Video Game Music and Sound 200
TM 5-855-1(Fundamentals of protective design for conventional weapons) 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3826219
求助须知:如何正确求助?哪些是违规求助? 3368652
关于积分的说明 10451479
捐赠科研通 3087997
什么是DOI,文献DOI怎么找? 1698916
邀请新用户注册赠送积分活动 817190
科研通“疑难数据库(出版商)”最低求助积分说明 770065