Asymmetric Student-Teacher Networks for Industrial Anomaly Detection

异常检测 分歧(语言学) 异常(物理) 计算机科学 相似性(几何) 人工神经网络 RGB颜色模型 工作流程 人工智能 流量(数学) 模式识别(心理学) 机器学习 图像(数学) 数据挖掘 数学 工程类 工业工程 语言学 凝聚态物理 物理 哲学 几何学
作者
Marco Rudolph,Tom Wehrbein,Bodo Rosenhahn,Bastian Wandt
标识
DOI:10.1109/wacv56688.2023.00262
摘要

Industrial defect detection is commonly addressed with anomaly detection (AD) methods where no or only incomplete data of potentially occurring defects is available. This work discovers previously unknown problems of student-teacher approaches for AD and proposes a solution, where two neural networks are trained to produce the same output for the defect-free training examples. The core assumption of student-teacher networks is that the distance between the outputs of both networks is larger for anomalies since they are absent in training. However, previous methods suffer from the similarity of student and teacher architecture, such that the distance is undesirably small for anomalies. For this reason, we propose asymmetric student-teacher networks (AST). We train a normalizing flow for density estimation as a teacher and a conventional feed-forward network as a student to trigger large distances for anomalies: The bijectivity of the normalizing flow enforces a divergence of teacher outputs for anomalies compared to normal data. Outside the training distribution the student cannot imitate this divergence due to its fundamentally different architecture. Our AST network compensates for wrongly estimated likelihoods by a normalizing flow, which was alternatively used for anomaly detection in previous work. We show that our method produces state-of-the-art results on the two currently most relevant defect detection datasets MVTec AD and MVTec 3D-AD regarding image-level anomaly detection on RGB and 3D data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
彩色亿先发布了新的文献求助10
1秒前
suxiaosi完成签到 ,获得积分10
2秒前
2秒前
2秒前
坚定的小馒头完成签到 ,获得积分10
3秒前
清清发布了新的文献求助10
3秒前
3秒前
杨杨杨完成签到,获得积分10
3秒前
4秒前
小柿子完成签到,获得积分10
4秒前
BSFXZ完成签到,获得积分10
4秒前
4秒前
文文发布了新的文献求助10
4秒前
丘比特应助个性的雪旋采纳,获得10
5秒前
科目三应助滕擎采纳,获得10
6秒前
个性铅笔发布了新的文献求助10
6秒前
杏树完成签到,获得积分10
6秒前
葫芦娃发布了新的文献求助10
6秒前
徐彬荣发布了新的文献求助10
6秒前
6秒前
查文献的见纤完成签到,获得积分10
7秒前
7秒前
7秒前
文wen发布了新的文献求助10
7秒前
7秒前
HtheJ完成签到,获得积分10
8秒前
8秒前
wang完成签到,获得积分10
8秒前
8秒前
8秒前
cocj发布了新的文献求助10
8秒前
Hello应助陶小陶采纳,获得10
8秒前
8秒前
star完成签到,获得积分10
8秒前
9秒前
9秒前
thinking发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4478351
求助须知:如何正确求助?哪些是违规求助? 3935846
关于积分的说明 12210724
捐赠科研通 3590566
什么是DOI,文献DOI怎么找? 1974377
邀请新用户注册赠送积分活动 1011678
科研通“疑难数据库(出版商)”最低求助积分说明 905165