Interpretable machine learning model for predicting early recurrence of pancreatic cancer: integrating intratumoral and peritumoral radiomics with body composition

医学 无线电技术 队列 病态的 可解释性 内科学 胰腺导管腺癌 回顾性队列研究 胰腺癌 放射科 肿瘤科 癌症 机器学习 计算机科学
作者
Linxia Wu,Chunyuan Cen,Davy Xuesong Ouyang,Licai Zhang,Xin Li,Heshui Wu,Mingguang He,Ping Han,Wei Sheng Tan,Lei Chen,Chuansheng Zheng
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:111 (11): 8198-8211 被引量:1
标识
DOI:10.1097/js9.0000000000003078
摘要

Background: Pancreatic ductal adenocarcinoma (PDAC) is associated with a high rate of early recurrence (ER) after radical resection, which significantly affects long-term survival. Currently, no reliable system exists for predicting ER in these patients. This study aimed to develop a machine learning (ML) model combining intratumoral and peritumoral radiomic features with body composition to predict the ER risk in patients with PDAC following radical resection. Materials and methods: This study included patients with PDAC who underwent upfront surgery at four hospitals between June 2014 and December 2023. Preoperative clinical information, computed tomography (CT) images, and postoperative pathological data were collected. CT-quantified body composition was measured; radiomic features were extracted from the intratumoral and peritumoral regions. Six ML algorithms were used to develop predictive models, including radiomics, clinical, clinical-radiomics, and clinicopathological-radiomics models. The SHapley Additive exPlanations (SHAP) method was applied for model interpretability. Results: A total of 589 patients were evaluated, including 320 patients (mean age: 60.4 ± 8.3 years; 191 men) in the training cohort, 138 patients (mean age: 60.7 ± 8.9 years; 84 men) in the internal validation cohort, and 131 patients (mean age: 61.7 ± 10.9 years; 76 men) in the external validation cohort. The intra-peri-radiomics model, based on the random forest algorithm, achieved the best performance, with AUCs of 0.865, 0.849, and 0.839 in the training, internal validation, and external validation cohorts, respectively. Incorporating clinicopathological factors, the combined model showed superior performance, with AUCs of 0.936, 0.899, and 0.884 in the training, internal validation, and external validation cohorts, respectively. SHAP analysis revealed that radiomic features, adjuvant therapy, CA199, lymphovascular invasion, platelet-lymphocyte ratio, visceral fat index, CA125, visceral-subcutaneous fat tissue ratio, tumor size, and TNM stage significantly contributed to the prediction of ER. Conclusion: The developed ML model, integrating radiomic features and clinicopathological factors, offered superior predictive accuracy for ER in patients with PDAC post-surgery. SHAP visualization enhanced the model’s interpretability and facilitated clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LewisAcid应助科研通管家采纳,获得20
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
虚幻百川应助科研通管家采纳,获得10
刚刚
李优秀完成签到,获得积分10
刚刚
濮阳芷蕊发布了新的文献求助10
刚刚
香蕉诗蕊应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
刚刚
1秒前
1秒前
1秒前
俊逸友蕊发布了新的文献求助10
2秒前
2秒前
太阳阳发布了新的文献求助10
3秒前
刘萍发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
cupid_lu完成签到,获得积分10
5秒前
陌人归发布了新的文献求助20
6秒前
搜集达人应助wqqwds采纳,获得10
7秒前
SciGPT应助夏鸢采纳,获得10
7秒前
7秒前
8秒前
Lucas应助早早早采纳,获得10
9秒前
9秒前
怪怪发布了新的文献求助200
9秒前
10秒前
10秒前
11秒前
Tina发布了新的文献求助10
12秒前
cc发布了新的文献求助10
13秒前
烟花应助liang采纳,获得10
13秒前
善学以致用应助党羽采纳,获得10
13秒前
ATIHSA88应助否定的否定采纳,获得10
14秒前
帕尼尼发布了新的文献求助10
14秒前
15秒前
不吃番茄的土豆墙完成签到,获得积分10
15秒前
自由从筠完成签到 ,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632254
求助须知:如何正确求助?哪些是违规求助? 4726532
关于积分的说明 14981567
捐赠科研通 4790212
什么是DOI,文献DOI怎么找? 2558228
邀请新用户注册赠送积分活动 1518633
关于科研通互助平台的介绍 1479071