亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Interpretable Machine Learning Model for Predicting Early Recurrence of Pancreatic Cancer: Integrating Intratumoral and Peritumoral Radiomics With Body Composition

医学 无线电技术 队列 病态的 可解释性 内科学 胰腺导管腺癌 回顾性队列研究 胰腺癌 放射科 肿瘤科 癌症 机器学习 计算机科学
作者
Linxia Wu,Chunyuan Cen,Davy Xuesong Ouyang,Licai Zhang,Xin Li,Heshui Wu,Mingguang He,Ping Han,Wei Sheng Tan,Lei Chen,Chuansheng Zheng
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000003078
摘要

Background: Pancreatic ductal adenocarcinoma (PDAC) is associated with a high rate of early recurrence (ER) after radical resection, which significantly affects long-term survival. Currently, no reliable system exists for predicting ER in these patients. This study aimed to develop a machine learning (ML) model combining intratumoral and peritumoral radiomic features with body composition to predict the ER risk in patients with PDAC following radical resection. Materials and Methods: This study included patients with PDAC who underwent upfront surgery at four hospitals between June 2014 and December 2023. Preoperative clinical information, CT images, and postoperative pathological data were collected. CT-quantified body composition was measured; radiomic features were extracted from the intratumoral and peritumoral regions. Six ML algorithms were used to develop predictive models, including radiomics, clinical, clinical-radiomics, and clinicopathological-radiomics models. The SHapley Additive exPlanations (SHAP) method was applied for model interpretability. Results: A total of 589 patients were evaluated, including 320 patients (mean age: 60.4 ± 8.3 years; 191 men) in the training cohort, 138 patients (mean age: 60.7 ± 8.9 years; 84 men) in the internal validation cohort, and 131 patients (mean age: 61.7 ± 10.9 years; 76 men) in the external validation cohort. The intra-peri-radiomics model, based on the random forest algorithm, achieved the best performance, with AUCs of 0.865, 0.849, and 0.839 in the training, internal validation, and external validation cohorts, respectively. Incorporating clinicopathological factors, the combined model showed superior performance, with AUCs of 0.936, 0.899, and 0.884 in the training, internal validation, and external validation cohorts, respectively. SHAP analysis revealed that radiomic features, adjuvant therapy, CA199, lymphovascular invasion, platelet-lymphocyte ratio, visceral fat index, CA125, visceral-subcutaneous fat tissue ratio, tumor size, and TNM stage significantly contributed to the prediction of ER. Conclusion: The developed ML model, integrating radiomic features and clinicopathological factors, offered superior predictive accuracy for ER in patients with PDAC post-surgery. SHAP visualization enhanced the model’s interpretability and facilitated clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9999完成签到,获得积分10
2秒前
寒樱怒放完成签到,获得积分10
4秒前
4秒前
6秒前
寒樱怒放发布了新的文献求助10
8秒前
矮小的笑槐完成签到,获得积分10
8秒前
9999发布了新的文献求助30
9秒前
淡然绝山完成签到,获得积分10
10秒前
LPPQBB应助yoyo采纳,获得10
12秒前
阿翼完成签到 ,获得积分10
16秒前
冰西瓜完成签到 ,获得积分0
18秒前
25秒前
李健的小迷弟应助云渊采纳,获得30
27秒前
yoyo完成签到,获得积分10
30秒前
Demi_Ming完成签到,获得积分10
33秒前
40秒前
XueXiTong完成签到,获得积分10
44秒前
Magali发布了新的文献求助10
44秒前
Ashy完成签到,获得积分10
44秒前
ZTLlele完成签到 ,获得积分10
46秒前
机智咖啡豆完成签到 ,获得积分10
47秒前
丘比特应助灵巧的导师采纳,获得30
49秒前
认真的蝴蝶完成签到,获得积分10
52秒前
笔墨留香发布了新的文献求助10
54秒前
糊涂涂完成签到 ,获得积分10
59秒前
笔墨留香完成签到,获得积分10
1分钟前
1分钟前
小冉完成签到,获得积分10
1分钟前
1分钟前
冷静的傲安完成签到,获得积分10
1分钟前
1分钟前
1分钟前
song发布了新的文献求助10
1分钟前
1分钟前
学到疯魔发布了新的文献求助10
1分钟前
甜美帅哥发布了新的文献求助10
1分钟前
1分钟前
曲聋五完成签到 ,获得积分0
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291337
求助须知:如何正确求助?哪些是违规求助? 4442401
关于积分的说明 13829819
捐赠科研通 4325400
什么是DOI,文献DOI怎么找? 2374223
邀请新用户注册赠送积分活动 1369520
关于科研通互助平台的介绍 1333712