已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Artificial intelligence-based donor oocyte quality assessment moderately improves the prediction of blastocyst development: a first step towards higher personalization in the management of egg donation treatments

胚泡 男科 人类受精 卵母细胞 生物 妇科 体外受精 医学 怀孕 胚胎 遗传学 胚胎发生
作者
Danilo Cimadomo,Vicente Badajoz,María Hebles,L Mifsud,Cristina Urda,Teresa Sánchez,A Sanchez,Cristina Ortega‐Ferrusola,Juliana Londero Silva Ávila,C. Mariné,N Mercuri,Jullin Fjeldstad,Alex Krivoi,Dan Nayot,Laura Rienzi
出处
期刊:Human Reproduction [Oxford University Press]
卷期号:40 (10): 1886-1892
标识
DOI:10.1093/humrep/deaf153
摘要

Abstract STUDY QUESTION Can an artificial intelligence (AI)-based oocyte scoring system reliably predict the developmental competence of fresh donor oocytes? SUMMARY ANSWER The AI-derived Magenta Score was significantly associated with fertilization, blastocyst formation, and helpful to estimate cumulative live birth rates, although a trend toward overestimation was observed in a subset of cycles. WHAT IS KNOWN ALREADY Oocyte quality is a critical determinant of IVF success; however, standardized and objective methods for its assessment are lacking. Current allocation strategies in oocyte donation cycles often neglect recipient-related factors and risk overproduction of surplus embryos. AI-based evaluation may offer a more objective, reproducible alternative to traditional morphology-based assessment. STUDY DESIGN, SIZE, DURATION Prospective, observational, multicenter, blinded cohort study including 1179 fresh metaphase II (MII) oocytes from 145 donors, allocated to 171 recipient couples across three IVF centers between June 2023 and October 2024. PARTICIPANTS/MATERIALS, SETTING, METHODS Denuded MII oocytes were imaged at 200–400× magnification and assessed using an AI-based scoring system (Magenta Score, Future Fertility). The primary outcome was the association between Magenta Score and blastocyst development, adjusted for donor age, sperm motility, and culture medium. Secondary outcomes included associations with oocyte dysmorphisms, fertilization, blastocyst quality and timing, implantation, cumulative live birth rates, and accuracy of blastocyst yield predictions. MAIN RESULTS AND THE ROLE OF CHANCE Oocytes with higher Magenta Scores had significantly higher rates of 2PN fertilization (odds ratio [OR] 1.08) and blastocyst formation (OR 1.19), independent of confounders. Magenta Score per se displayed an AUC of 0.6, reaching 0.62 if combined with donors’ age and 0.65 if also combined with male partners’ sperm motility 1%-increase and culture medium used, highlighting the multifactorial nature of embryo development. In 82% of cases, the actual blastocyst number fell within or above the predicted range extrapolated from the Magenta Scores of each cohort. A 10% increase in the predicted probability of achieving at least one live birth based on the Magenta Score was associated with a significantly higher true cumulative live birth rate (OR 1.55; AUC 0.691). LIMITATIONS, REASONS FOR CAUTION The observational design precludes causal inference. Only fresh oocyte cycles were evaluated, limiting extrapolation to vitrified oocytes. Some donor oocytes were cryopreserved and excluded from analysis. Future randomized trials are needed to assess clinical utility when AI is actively used for allocation decisions. WIDER IMPLICATIONS OF THE FINDINGS AI-based assessment of donor oocytes offers a promising tool to enhance the personalization and fairness of oocyte allocation in donation cycles. However, to maximize its clinical value, AI predictions should be integrated with additional donor-, recipient-, and cycle-specific variables. Further refinements and prospective validations are necessary to improve prediction accuracy and avoid overestimation, ultimately optimizing cumulative live birth rates while minimizing surplus embryo production. STUDY FUNDING/COMPETING INTEREST(s) No funding. N.M., J.F., D.N., and A.K. are employees and hold stock options of Future Fertility, the company that developed the AI model used. All other authors report no conflict of interest related with the content of this manuscript. TRIAL REGISTRATION NUMBER n/a
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
热心易绿完成签到 ,获得积分10
1秒前
LIU完成签到 ,获得积分10
1秒前
大力的康乃馨完成签到,获得积分10
3秒前
3秒前
5秒前
uranus完成签到,获得积分10
7秒前
David完成签到 ,获得积分10
8秒前
8秒前
村上种树发布了新的文献求助10
8秒前
谨慎采白完成签到 ,获得积分10
10秒前
绿水晶完成签到 ,获得积分10
16秒前
菜菜完成签到 ,获得积分10
16秒前
东风夜放花千树完成签到 ,获得积分10
18秒前
18秒前
19秒前
23秒前
芝士奶酪发布了新的文献求助10
23秒前
24秒前
小耗子完成签到,获得积分10
24秒前
吉吉国王的跟班完成签到 ,获得积分10
26秒前
xh1255发布了新的文献求助10
26秒前
单身的老三完成签到,获得积分20
29秒前
科目三应助Yang采纳,获得30
29秒前
精明黄蜂完成签到 ,获得积分10
29秒前
29秒前
大个应助xh1255采纳,获得10
30秒前
xiuxiu完成签到 ,获得积分10
34秒前
35秒前
秋秋发布了新的文献求助10
35秒前
脱锦涛完成签到 ,获得积分10
35秒前
36秒前
陈欣瑶完成签到 ,获得积分10
36秒前
冷静的访天完成签到 ,获得积分10
39秒前
39秒前
迷路鸭子完成签到,获得积分10
40秒前
Jason完成签到 ,获得积分10
44秒前
愉快的犀牛完成签到 ,获得积分10
44秒前
Yang发布了新的文献求助30
45秒前
义气幼珊完成签到 ,获得积分10
45秒前
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
Introduction to Early Childhood Education 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418128
求助须知:如何正确求助?哪些是违规求助? 4533812
关于积分的说明 14142564
捐赠科研通 4450102
什么是DOI,文献DOI怎么找? 2441101
邀请新用户注册赠送积分活动 1432850
关于科研通互助平台的介绍 1410065