Potential prediction of the microbial spoilage of beef using spatially resolved hyperspectral scattering profiles

高光谱成像 食物腐败 肉类腐败 食品科学 生物系统 化学 遥感 生物 细菌 遗传学 地质学
作者
Yankun Peng,Jing Zhang,Wei Wang,Yongyu Li,Wu Jian,Hui Huang,Xiaodong Gao,Weikang Jiang
出处
期刊:Journal of Food Engineering [Elsevier BV]
卷期号:102 (2): 163-169 被引量:113
标识
DOI:10.1016/j.jfoodeng.2010.08.014
摘要

Spoilage in beef is the result of decomposition and the formation of metabolites caused by the growth and enzymatic activity of microorganisms. There is still no technology for the rapid, accurate and non-destructive detection of bacterially spoiled or contaminated beef. In this study, hyperspectral imaging technique was exploited to measure biochemical changes within the fresh beef. Fresh beef rump steaks were purchased from a commercial plant, and left to spoil in refrigerator at 8 °C. Every 12 h, hyperspectral scattering profiles over the spectral region between 400 and 1100 nm were collected directly from the sample surface in reflection pattern in order to develop an optimal model for prediction of the beef spoilage, in parallel the total viable count (TVC) per gram of beef were obtained by classical microbiological plating methods. The spectral scattering profiles at individual wavelengths were fitted accurately by a two-parameter Lorentzian distribution function. TVC prediction models were developed, using multi-linear regression, on relating individual Lorentzian parameters and their combinations at different wavelengths to log10(TVC) value. The best predictions were obtained with r2 = 0.95 and SEP = 0.30 for log10(TVC). The research demonstrated that hyperspectral imaging technique showed potential for real-time and non-destructive detection of bacterial spoilage in beef.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脆皮鱼发布了新的文献求助10
1秒前
俊逸雪瑶发布了新的文献求助10
2秒前
狂野怜蕾完成签到,获得积分10
3秒前
3秒前
Hello应助koitoyu采纳,获得10
3秒前
6秒前
7秒前
共享精神应助儒雅的不愁采纳,获得10
7秒前
酷波er应助俊逸雪瑶采纳,获得20
8秒前
丘比特应助俊逸雪瑶采纳,获得10
8秒前
像只猫发布了新的文献求助10
8秒前
胡志兵发布了新的文献求助20
11秒前
11秒前
动听的笑晴完成签到,获得积分10
13秒前
既然寄了,那就开摆完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
传奇3应助高贵紫槐采纳,获得10
14秒前
小飞侠完成签到,获得积分10
15秒前
koitoyu发布了新的文献求助10
16秒前
紫金大萝卜完成签到,获得积分0
16秒前
Zbmd完成签到,获得积分10
20秒前
wanghuiyanyx完成签到,获得积分10
20秒前
20秒前
张歪歪发布了新的文献求助10
21秒前
烟花应助渡己。采纳,获得10
21秒前
开朗的君浩完成签到,获得积分10
22秒前
24秒前
24秒前
可爱的函函应助dsaifjs采纳,获得10
25秒前
27秒前
27秒前
xch发布了新的文献求助10
29秒前
科研通AI2S应助jacob258采纳,获得10
29秒前
高贵紫槐发布了新的文献求助10
29秒前
可爱的函函应助wz采纳,获得10
30秒前
最佳完成签到 ,获得积分10
30秒前
脑洞疼应助陆驳采纳,获得10
30秒前
31秒前
31秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
求助→丁香园·用药助手2025版《临床决策疾病100问》的全套电子版PDF 1000
Astrochemistry 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874927
求助须知:如何正确求助?哪些是违规求助? 3417338
关于积分的说明 10703162
捐赠科研通 3141706
什么是DOI,文献DOI怎么找? 1733501
邀请新用户注册赠送积分活动 836086
科研通“疑难数据库(出版商)”最低求助积分说明 782355