已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sensitivity analysis of a decision tree classification to input data errors using a general Monte Carlo error sensitivity model

专题制图器 蒙特卡罗方法 灵敏度(控制系统) 统计 范畴变量 算法 数学 遥感 地理 卫星图像 电子工程 工程类
作者
Zhi Huang,Shawn W. Laffan
出处
期刊:International Journal of Geographical Information Science [Taylor & Francis]
卷期号:23 (11): 1433-1452 被引量:11
标识
DOI:10.1080/13658810802634949
摘要

Abstract We analysed the sensitivity of a decision tree derived forest type mapping to simulated data errors in input digital elevation model (DEM), geology and remotely sensed (Landsat Thematic Mapper) variables. We used a stochastic Monte Carlo simulation model coupled with a one‐at‐a‐time approach. The DEM error was assumed to be spatially autocorrelated with its magnitude being a percentage of the elevation value. The error of categorical geology data was assumed to be positional and limited to boundary areas. The Landsat data error was assumed to be spatially random following a Gaussian distribution. Each layer was perturbed using its error model with increasing levels of error, and the effect on the forest type mapping was assessed. The results of the three sensitivity analyses were markedly different, with the classification being most sensitive to the DEM error, than to the Landsat data errors, but with only a limited sensitivity to the geology data error used. A linear increase in error resulted in non‐linear increases in effect for the DEM and Landsat errors, while it was linear for geology. As an example, a DEM error of as small as ±2% reduced the overall test accuracy by more than 2%. More importantly, the same uncertainty level has caused nearly 10% of the study area to change its initial class assignment at each perturbation, on average. A spatial assessment of the sensitivities indicates that most of the pixel changes occurred within those forest classes expected to be more sensitive to data error. In addition to characterising the effect of errors on forest type mapping using decision trees, this study has demonstrated the generality of employing Monte Carlo analysis for the sensitivity and uncertainty analysis of categorical outputs that have distinctive characteristics from that of numerical outputs. Keywords: error modellingvegetation mapping and modellingland use and land coverterrain analysis Acknowledgements This paper was improved by the contribution of two anonymous reviewers. Notes §Current address: Marine and Coastal Environment Group, Petroleum Marine Division, Geoscience Australia, Canberra, ACT, Australia
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pyb完成签到 ,获得积分10
1秒前
谢志超发布了新的文献求助30
1秒前
SiO2完成签到 ,获得积分0
1秒前
华仔应助妍Y采纳,获得10
3秒前
洛奇亚完成签到,获得积分10
4秒前
不配.应助zyj采纳,获得200
5秒前
Hello应助yutian928采纳,获得10
6秒前
啦啦啦发布了新的文献求助10
6秒前
6秒前
chunfengfusu完成签到,获得积分10
7秒前
JamesPei应助徐志豪采纳,获得10
7秒前
7682号关注了科研通微信公众号
8秒前
大猫完成签到 ,获得积分10
8秒前
小马甲应助王燕采纳,获得10
9秒前
今后应助扶风阁主采纳,获得10
10秒前
桐桐应助Adax采纳,获得10
10秒前
11秒前
LION完成签到,获得积分10
11秒前
桐桐应助白晨采纳,获得10
12秒前
Kkk发布了新的文献求助10
12秒前
葡萄藤上的云朵完成签到,获得积分10
13秒前
yyd完成签到 ,获得积分10
14秒前
15秒前
炙热的若枫完成签到 ,获得积分10
15秒前
15秒前
16秒前
格格巫完成签到,获得积分10
17秒前
乐乐应助why采纳,获得10
17秒前
丘比特应助haha采纳,获得10
18秒前
852应助johnzsin采纳,获得10
19秒前
19秒前
虚拟的芾应助落寞的白易采纳,获得20
20秒前
21秒前
21秒前
执着的松鼠完成签到,获得积分10
22秒前
22秒前
hrpppp发布了新的文献求助10
24秒前
26秒前
yutian928发布了新的文献求助10
27秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5243732
求助须知:如何正确求助?哪些是违规求助? 4410020
关于积分的说明 13726872
捐赠科研通 4279637
什么是DOI,文献DOI怎么找? 2348225
邀请新用户注册赠送积分活动 1345435
关于科研通互助平台的介绍 1303665