Machine learning in healthcare: review, opportunities and challenges

医疗保健 计算机科学 政治学 法学
作者
Anand Nayyar,Lata Gadhavi,N. Z. Jhanjhi
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 23-45 被引量:17
标识
DOI:10.1016/b978-0-12-821229-5.00011-2
摘要

Abstract Machine learning technology is a prominent research field aiming to build a system which imitates human intelligence. Machine learning can be applied in the healthcare domain. It cannot replace human physicians, but it can make better solutions to healthcare problems. Machine learning is the most important area to develop computational approaches automatically. In this chapter, we review the recent literature on applying machine learning technology to promote healthcare solutions. However, we also deliberate limitations, challenges, and opportunities in the healthcare domain using machine learning technology. To monitor and observe the effectiveness of treatment in the healthcare field, machine learning application can be used for diagnosis, prognosis, and perfect treatment plan for the detected disease. Machine learning technology can assist medical practitioner by empowering them with faster and more accurate solutions. In this chapter, readers will find the fundamentals with the progressive developments in the state-of-the-art machine learning-based system for healthcare. However, the evolving nature of medical science and technology creates an innovative scenario that must be studied in an interdisciplinary and holistic way. This chapter aims to obtain novel and quality research-work offerings in healthcare, which are facilitated by the machine learning procedures and techniques. Healthcare industries are focused on enhancing the power of machine learning because it considers a large amount of data daily.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
蒺藜发布了新的文献求助10
1秒前
3秒前
山石发布了新的文献求助10
3秒前
天真的香寒完成签到 ,获得积分10
3秒前
黄思雨发布了新的文献求助10
4秒前
橡树果应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
5秒前
搜集达人应助surain采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
Duolalala发布了新的文献求助10
5秒前
5秒前
5秒前
来日昭昭应助科研通管家采纳,获得10
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
6秒前
橡树果应助科研通管家采纳,获得10
6秒前
完美世界应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
Bebebe发布了新的文献求助10
6秒前
6秒前
7秒前
yan完成签到,获得积分10
8秒前
虚心的岩完成签到,获得积分10
9秒前
echo完成签到 ,获得积分10
9秒前
一沙发布了新的文献求助10
10秒前
山石完成签到,获得积分10
10秒前
Kenzonvay发布了新的文献求助20
11秒前
11秒前
11秒前
zyw发布了新的文献求助10
13秒前
14秒前
wswddtd发布了新的文献求助10
14秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842551
求助须知:如何正确求助?哪些是违规求助? 3384645
关于积分的说明 10536396
捐赠科研通 3105179
什么是DOI,文献DOI怎么找? 1710071
邀请新用户注册赠送积分活动 823490
科研通“疑难数据库(出版商)”最低求助积分说明 774110