电阻率和电导率
标识
DOI:10.1088/1361-648x/abfc18
摘要
Satterthwaite and Toepke (1970Phys. Rev. Lett.25741) predicted high-temperature superconductivity in hydrogen-rich metallic alloys, based on an idea that these compounds should exhibit high Debye frequency of the proton lattice, which boosts the superconducting transition temperature,Tc. The idea has got full confirmation more than four decades later when Drozdovet al(2015Nature52573) experimentally discovered near-room-temperature superconductivity in highly-compressed sulphur superhydride, H3S. To date, more than a dozen of high-temperature hydrogen-rich superconducting phases in Ba-H, Pr-H, P-H, Pt-H, Ce-H, Th-H, S-H, Y-H, La-H, and (La, Y)-H systems have been synthesized and, recently, Honget al(2021arXiv:2101.02846) reported on the discovery ofC2/m-SnH12phase with superconducting transition temperature ofTc∼ 70 K. Here we analyse the magnetoresistance data,R(T,B), ofC2/m-SnH12phase and report that this superhydride exhibits the ground state superconducting gap of Δ(0) = 9.2 ± 0.5 meV, the ratio of 2Δ(0)/kBTc= 3.3 ± 0.2, and 0.010
科研通智能强力驱动
Strongly Powered by AbleSci AI