氮氧化物
环境科学
柴油
氮氧化物
氮氧化物
污染物
环境工程
气象学
废物管理
化学
工程类
燃烧
地理
有机化学
作者
Napameth Phantawesak,Finn Coyle,Marc Stettler
标识
DOI:10.1021/acs.est.1c05083
摘要
Buses constitute a significant source of air pollutant emissions in cities. In this study, we present real-world NOx emissions from 97 diesel-hybrid buses measured using on-board diagnostic systems over 44 months and 6.35 million km in London. Each bus had previously been retrofitted with a selective catalytic reduction (SCR) aftertreatment system to reduce emissions of nitrogen oxides (NOx). On average, parallel hybrid (PH) and series hybrid (SH) buses emitted 3.80 g of NOx/km [standard deviation (SD) of 1.02] and 2.37 g of NOx/km (SD of 0.51), respectively. The SCR systems reduced engine-out emissions by 79.8% (SD of 5.0) and 87.2% (SD of 2.9) for the PHs and SHs, respectively. Lower ambient temperatures (0-10 °C) increased NOx emissions of the PHs by 24.2% but decreased NOx emissions of the SHs by 27.9% compared to values found at more moderate temperatures (10-20 °C). To improve emissions inventories, we provide new distance-based NOx emissions factors for different ranges of ambient temperature. During the COVID-19 pandemic, the emissions benefits of reduced congestion were largely offset by more frequent route layovers leading to lower SCR temperatures and effectiveness. This study shows that continuous in-service measurements enable quantification of real-world vehicle emissions over a wide range of operations that complements conventional testing approaches.
科研通智能强力驱动
Strongly Powered by AbleSci AI