Android Feature Selection based on Permissions, Intents, and API Calls

特征选择 计算机科学 Android(操作系统) 恶意软件 随机森林 机器学习 人工智能 支持向量机 特征提取 Android恶意软件 特征向量 数据挖掘 操作系统
作者
Fred Guyton,Wei Li,Ling Wang,Ajoy Kumar
标识
DOI:10.1109/sera54885.2022.9806471
摘要

Android is a platform that hosts roughly 99% of known mobile malware to date and is thus the focus of much research efforts in mobile malware detection. One of the main tools used in this effort is supervised machine learning. While a decade of work has made a lot of progress in detection accuracy, there is an obstacle that each stream of research is forced to overcome, feature selection, i.e., determining which attributes of Android are most effective as inputs into machine learning models. This research tackles the feature selection problem by providing the community with an exhaustive analysis of the three primary types of Android features used by researchers: Permissions, Intents and API Calls. We applied a wide spectrum of feature selection techniques including eleven different algorithms which consisted of filter methods, wrapper methods and embedded methods. Results were evaluated with three different supervised learning classifiers, Random Forest, Support Vector Machine and Neural Network, on a dataset with over 119K Android apps and over 400 features. The results showed that using a combination of Permissions, Intents and API Calls produced higher accuracy than using any of those alone or in any other combination. The results also showed that feature selection should be performed on the combined dataset, not by feature type and then combined and that the negative effects of not doing so are more pronounced the larger the feature set.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sandy完成签到,获得积分20
刚刚
支雨泽发布了新的文献求助10
2秒前
传奇3应助分析采纳,获得10
2秒前
3秒前
淡蓝色完成签到,获得积分20
4秒前
zxzb发布了新的文献求助10
4秒前
桐桐应助闪闪乘风采纳,获得10
5秒前
keyan_xiaojiang完成签到,获得积分20
5秒前
7秒前
水尽云生处完成签到,获得积分10
7秒前
华仔应助叁金采纳,获得10
8秒前
张珅豪发布了新的文献求助10
8秒前
羲和完成签到,获得积分10
8秒前
木雨完成签到 ,获得积分10
10秒前
12秒前
30040完成签到,获得积分10
13秒前
14秒前
14秒前
科研通AI5应助支雨泽采纳,获得10
14秒前
sedum完成签到,获得积分10
15秒前
海北完成签到 ,获得积分10
16秒前
小邹完成签到,获得积分10
17秒前
19秒前
wang完成签到,获得积分10
19秒前
爱坤坤发布了新的文献求助10
20秒前
热心市民远完成签到,获得积分10
20秒前
子言完成签到,获得积分10
21秒前
三三完成签到 ,获得积分10
22秒前
fairy完成签到 ,获得积分10
23秒前
钢铁加鲁鲁完成签到,获得积分0
25秒前
无花果应助qwe123采纳,获得10
27秒前
上官若男应助TonyLee采纳,获得10
27秒前
娃哈哈完成签到,获得积分20
28秒前
28秒前
昏睡的蟠桃应助Alex采纳,获得200
29秒前
赘婿应助JamesTYD采纳,获得10
31秒前
小鱼完成签到,获得积分10
31秒前
33秒前
33秒前
苗条伟帮发布了新的文献求助10
33秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835055
求助须知:如何正确求助?哪些是违规求助? 3377567
关于积分的说明 10499265
捐赠科研通 3097063
什么是DOI,文献DOI怎么找? 1705468
邀请新用户注册赠送积分活动 820611
科研通“疑难数据库(出版商)”最低求助积分说明 772142