Prediction of the Transition-Temperature Shift Using Machine Learning Algorithms and the Plotter Database

机器学习 人工智能 脆化 中子通量 计算机科学 梯度升压 设定值 材料科学 算法 随机森林 中子 冶金 物理 核物理学
作者
Diego Ferreño,Marta Serrano,Mark Kirk,José A. Sáinz-Aja
出处
期刊:Metals [MDPI AG]
卷期号:12 (2): 186-186 被引量:20
标识
DOI:10.3390/met12020186
摘要

The long-term operating strategy of nuclear plants must ensure the integrity of the vessel, which is subjected to neutron irradiation, causing its embrittlement over time. Embrittlement trend curves used to predict the dependence of the Charpy transition-temperature shift, ΔT41J, with neutron fluence, such as the one adopted in ASTM E900-15, are empirical or semi-empirical formulas based on parameters that characterize irradiation conditions (neutron fluence, flux and temperature), the chemical composition of the steel (copper, nickel, phosphorus and manganese), and the product type (plates, forgings, welds, or so-called standard reference materials (SRMs)). The ASTM (American Society for Testing and Materials) E900-15 trend curve was obtained as a combination of physical and phenomenological models with free parameters fitted using the available surveillance data from nuclear power plants. These data, collected to support ASTM’s E900 effort, open the way to an alternative, purely data-driven approach using machine learning algorithms. In this study, the ASTM PLOTTER database that was used to inform the ASTM E900-15 fit has been employed to train and validate a number of machine learning regression models (multilinear, k-nearest neighbors, decision trees, support vector machines, random forest, AdaBoost, gradient boosting, XGB, and multi-layer perceptron). Optimal results were obtained with gradient boosting, which provided a value of R2 = 0.91 and a root mean squared error ≈10.5 °C for the test dataset. These results outperform the prediction ability of existing trend curves, including ASTM E900-15, reducing the prediction uncertainty by ≈20%. In addition, impurity-based and permutation-based feature importance algorithms were used to identify the variables that most influence ΔT41J (copper, fluence, nickel and temperature, in this order), and individual conditional expectation and interaction plots were used to estimate the specific influence of each of the features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cindy发布了新的文献求助10
1秒前
jiang_judy发布了新的文献求助10
1秒前
Aaaaguo完成签到 ,获得积分10
2秒前
Zhang_BY发布了新的文献求助10
2秒前
3秒前
Purplesky完成签到,获得积分10
4秒前
搜集达人应助Lee采纳,获得10
4秒前
Dory发布了新的文献求助30
4秒前
DWRH发布了新的文献求助10
5秒前
5秒前
NexusExplorer应助柳青采纳,获得30
5秒前
十一月的阴天完成签到,获得积分10
6秒前
山猫完成签到,获得积分10
7秒前
7秒前
科研路一直绿灯完成签到,获得积分10
7秒前
7秒前
GLN完成签到,获得积分10
7秒前
7秒前
8秒前
熠熠完成签到,获得积分10
8秒前
8秒前
量子星尘发布了新的文献求助10
9秒前
风吹麦田应助涛临天下采纳,获得30
10秒前
10秒前
11秒前
11秒前
11秒前
天天快乐应助胡质斌采纳,获得10
11秒前
穆空完成签到,获得积分10
12秒前
Elaine完成签到,获得积分10
12秒前
1s完成签到,获得积分10
12秒前
FashionBoy应助花小研采纳,获得10
12秒前
王半书完成签到 ,获得积分10
12秒前
13秒前
13秒前
踏实青梦发布了新的文献求助10
13秒前
14秒前
玩命的书兰完成签到 ,获得积分10
14秒前
demi完成签到,获得积分10
14秒前
李婷婷发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5544953
求助须知:如何正确求助?哪些是违规求助? 4630738
关于积分的说明 14618290
捐赠科研通 4572499
什么是DOI,文献DOI怎么找? 2506868
邀请新用户注册赠送积分活动 1483872
关于科研通互助平台的介绍 1455252