亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spectral structure-oriented filtering of seismic data with self-adaptive paths

平滑的 算法 计算机科学 噪音(视频) 点式的 滤波器(信号处理) 平滑度 张量(固有定义) 数学 人工智能 几何学 数学分析 计算机视觉 图像(数学)
作者
Julián L. Gómez,Danilo R. Velis
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:84 (5): V271-V280 被引量:6
标识
DOI:10.1190/geo2018-0788.1
摘要

We have developed an algorithm to perform structure-oriented filtering (SOF) in 3D seismic data by learning the data structure in the frequency domain. The method, called spectral SOF (SSOF), allows us to enhance the signal structures in the [Formula: see text]-[Formula: see text]-[Formula: see text] domain by running a 1D edge-preserving filter along curvilinear self-adaptive trajectories that connect points of similar characteristics. These self-adaptive paths are given by the eigenvectors of the smoothed structure tensor, which are easily computed using closed-form expressions. SSOF relies on a few parameters that are easily tuned and on simple 1D convolutions for tensor calculation and smoothing. It is able to process a 3D data volume with a 2D strategy using basic 1D edge-preserving filters. In contrast to other SOF techniques, such as anisotropic diffusion, anisotropic smoothing, and plane-wave prediction, SSOF does not require any iterative process to reach the denoised result. We determine the performance of SSOF using three public domain field data sets, which are subsets of the well-known Waipuku, Penobscot, and Teapot surveys. We use the Waipuku subset to indicate the signal preservation of the method in good-quality data when mostly background random noise is present. Then, we use the Penobscot subset to illustrate random noise and footprint signature attenuation, as well as to show how faults and fractures are improved. Finally, we analyze the Teapot stacked and depth-migrated subsets to show random and coherent noise removal, leading to an improvement of the volume structural details and overall lateral continuity. The results indicate that random noise, footprints, and other artifacts can be successfully suppressed, enhancing the delineation of geologic structures and seismic horizons and preserving the original signal bandwidth.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研龙应助科研通管家采纳,获得10
3秒前
核桃应助科研通管家采纳,获得10
3秒前
核桃应助科研通管家采纳,获得10
3秒前
核桃应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
5秒前
称心的砖头完成签到,获得积分10
6秒前
huoxing完成签到 ,获得积分10
7秒前
7秒前
7秒前
洁净亦巧完成签到,获得积分10
7秒前
12秒前
谢丹完成签到 ,获得积分10
12秒前
13秒前
Ruirui发布了新的文献求助10
13秒前
Feng关注了科研通微信公众号
14秒前
寒江雪发布了新的文献求助10
18秒前
领导范儿应助田柾国采纳,获得10
18秒前
波波完成签到 ,获得积分10
23秒前
25秒前
田柾国完成签到,获得积分10
26秒前
31秒前
田柾国发布了新的文献求助10
31秒前
Aippan发布了新的文献求助10
35秒前
科研通AI6应助Edward采纳,获得10
36秒前
科研通AI5应助邢文瑞采纳,获得20
38秒前
45秒前
花谢发布了新的文献求助30
46秒前
HUI完成签到,获得积分10
47秒前
snail完成签到,获得积分10
52秒前
歪歪yyyyc完成签到,获得积分10
58秒前
Feng完成签到,获得积分10
1分钟前
尹静涵完成签到 ,获得积分10
1分钟前
1分钟前
学术垃圾关注了科研通微信公众号
1分钟前
dawn发布了新的文献求助10
1分钟前
文艺沉鱼完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5063508
求助须知:如何正确求助?哪些是违规求助? 4287059
关于积分的说明 13358331
捐赠科研通 4105075
什么是DOI,文献DOI怎么找? 2247845
邀请新用户注册赠送积分活动 1253402
关于科研通互助平台的介绍 1184427