Multiple Convolutional Recurrent Neural Networks for Fault Identification and Performance Degradation Evaluation of High-Speed Train Bogie

转向架 断层(地质) 计算机科学 循环神经网络 降级(电信) 人工神经网络 卷积神经网络 鉴定(生物学) 可靠性工程 人工智能 结构工程 工程类 地质学 地震学 电信 植物 生物
作者
Na Qin,Kaiwei Liang,Deqing Huang,Lei Ma,Andrew H. Kemp
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:31 (12): 5363-5376 被引量:87
标识
DOI:10.1109/tnnls.2020.2966744
摘要

As an important part of high-speed train (HST), the mechanical performance of bogies imposes a direct impact on the safety and reliability of HST. It is a fact that, regardless of the potential mechanical performance degradation status, most existing fault diagnosis methods focus only on the identification of bogie fault types. However, for application scenarios such as auxiliary maintenance, identifying the performance degradation of bogie is critical in determining a particular maintenance strategy. In this article, by considering the intrinsic link between fault type and performance degradation of bogie, a novel multiple convolutional recurrent neural network (M-CRNN) that consists of two CRNN frameworks is proposed for simultaneous diagnosis of fault type and performance degradation state. Specifically, the CRNN framework 1 is designed to detect the fault types of the bogie. Meanwhile, CRNN framework 2, which is formed by CRNN Framework 1 and an RNN module, is adopted to further extract the features of fault performance degradation. It is worth highlighting that M-CRNN extends the structure of traditional neural networks and makes full use of the temporal correlation of performance degradation and model fault types. The effectiveness of the proposed M-CRNN algorithm is tested via the HST model CRH380A at different running speeds, including 160, 200, and 220 km/h. The overall accuracy of M-CRNN, i.e., the product of the accuracies for identifying the fault types and evaluating the fault performance degradation, is beyond 94.6% in all cases. This clearly demonstrates the potential applicability of the proposed method for multiple fault diagnosis tasks of HST bogie system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔬菜大棚发布了新的文献求助10
刚刚
adadada发布了新的文献求助10
1秒前
852应助tommy999采纳,获得10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
王美祥发布了新的文献求助10
2秒前
2秒前
3秒前
JIANYOUFU发布了新的文献求助30
3秒前
巴扎嘿完成签到,获得积分10
3秒前
星驰给星驰的求助进行了留言
5秒前
5秒前
wheat完成签到,获得积分10
5秒前
hvgjgfjhgjh发布了新的文献求助10
5秒前
5秒前
JamesPei应助复杂的保温杯采纳,获得10
5秒前
完美世界应助巴扎嘿采纳,获得10
6秒前
懵懂的羽毛完成签到,获得积分10
6秒前
6秒前
6秒前
冉小维完成签到,获得积分10
6秒前
8秒前
sxmt123456789发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
WANGYU发布了新的文献求助10
11秒前
Jasper应助啦啦啦采纳,获得10
12秒前
健壮问兰发布了新的文献求助10
12秒前
plh发布了新的文献求助10
12秒前
高天雨发布了新的文献求助20
13秒前
spyspy发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762565
求助须知:如何正确求助?哪些是违规求助? 5535908
关于积分的说明 15403209
捐赠科研通 4898713
什么是DOI,文献DOI怎么找? 2634982
邀请新用户注册赠送积分活动 1583194
关于科研通互助平台的介绍 1538303