Estimating PM2.5 concentrations in Northeastern China with full spatiotemporal coverage, 2005–2016

环境科学 微粒 期限(时间) 卫星 均方误差 能见度 气象学 空气污染 气候学 遥感 大气科学 地理 统计 数学 地质学 生物 物理 量子力学 工程类 航空航天工程 有机化学 化学 生态学
作者
Xia Meng,Cong Liu,Lina Zhang,Weidong Wang,Jennifer Stowell,Haidong Kan,Yang Liu
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:253: 112203-112203 被引量:137
标识
DOI:10.1016/j.rse.2020.112203
摘要

Predicting long-term spatiotemporal characteristics of fine particulate matter (PM2.5) is important in China to understand historical levels of PM2.5, to support health effects research of both long-term and short-term exposures to PM2.5, and to evaluate the efficacy of air pollution control policies. Satellite-retrieved aerosol optical depth (AOD) provides a unique opportunity to characterize the long-term trends of ground-level PM2.5 at high spatial resolution. However, the missing rate of AOD in Northeastern China (NEC) is very high, especially in winter, and challenges the accuracy of long-term predictions of PM2.5 if left unresolved. Using random forest algorithms, this study developed a gap-filling approach combing satellite AOD, meteorological data, land use parameters, population and visibility in the NEC during 2005–2016. The model, including all predictors, combined with a model without AOD was able to fill the gap of PM2.5 predictions caused by missing AOD at 1-km resolution. The R2 (RMSE) of the full-coverage predictions was 0.81 (18.5 μg/m3) at the daily level. Gap-filled PM2.5 predictions on days with missing AOD reduced the relative prediction error from 28% to 2.5% in winter. The leave-one-year-out-cross-validation R2 (RMSE) of the full-coverage predictions was 0.65 (16.3 μg/m3) at the monthly level, indicating relatively high accuracy of predicted historical PM2.5 concentrations. Our results suggested that AOD helped increase the reliability of historical PM2.5 prediction when ground PM2.5 measurements were unavailable, even though predictions from the AOD model only accounted for approximate 37% of the whole dataset. Predicted PM2.5 level in NEC have increased since 2005, reached its peak during 2013–2015, then saw a major decline in 2016. Our high-resolution predictions also showed a south to north gradient and many pollution hot spots in the city clusters surrounding provincial capitals, as well as within large cities. Overall, by combining predictions from the AOD model with higher accuracy and predictions from the non-AOD model to achieve full coverage, our modeling approach could produce long-term, full-coverage historical PM2.5 levels in high-latitude areas in China, despite the widespread and persistent AOD missingness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LinniL完成签到,获得积分10
刚刚
研友_V8RmmZ发布了新的文献求助10
1秒前
小冰完成签到,获得积分10
1秒前
姨母卿卿发布了新的文献求助10
1秒前
肉肉完成签到,获得积分10
1秒前
1秒前
wwx完成签到,获得积分10
3秒前
机灵的南蕾完成签到,获得积分10
3秒前
科研通AI5应助biubiu0417采纳,获得10
3秒前
3秒前
4秒前
FashionBoy应助清脆遥采纳,获得10
4秒前
Orange应助滑板鹿采纳,获得10
5秒前
5秒前
6秒前
HY完成签到,获得积分20
6秒前
7秒前
7秒前
8秒前
七月流火应助爱喝冰咖啡采纳,获得80
8秒前
我要瘦发布了新的文献求助10
8秒前
30发布了新的文献求助10
8秒前
他们叫我小伟完成签到 ,获得积分10
9秒前
NSS完成签到,获得积分0
9秒前
寒江雪发布了新的文献求助10
9秒前
realrrr完成签到 ,获得积分10
9秒前
YanuoK发布了新的文献求助10
10秒前
10秒前
2Rui发布了新的文献求助10
10秒前
10秒前
NexusExplorer应助malenia采纳,获得10
10秒前
鱼饼bb完成签到,获得积分10
11秒前
CipherSage应助HY采纳,获得30
11秒前
12秒前
yukiycc完成签到 ,获得积分10
13秒前
13秒前
lJH发布了新的文献求助10
13秒前
Akim应助研友_V8RmmZ采纳,获得10
13秒前
敏感的鼠标完成签到 ,获得积分10
14秒前
preciado完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5069021
求助须知:如何正确求助?哪些是违规求助? 4290502
关于积分的说明 13367811
捐赠科研通 4110451
什么是DOI,文献DOI怎么找? 2250993
邀请新用户注册赠送积分活动 1256182
关于科研通互助平台的介绍 1188650