淀粉
蔗糖
化学
食品科学
蔗糖合成酶
生物化学
碳水化合物
酶
转化酶
作者
Xiangbei Du,Xinyue Zhang,Min Xi,Lingcong Kong
标识
DOI:10.1016/j.plaphy.2020.04.027
摘要
Split application could improve nitrogen (N) uptake and increase sweetpotato yields under reduced N supply; however, little is known about how it affects the process of starch production in storage roots. An experiment was conducted to determine the effects of three N management strategies [conventional basal N management; 80% of the conventional N rate applied as a basal fertilizer; 80% of the conventional N rate equally split at transplanting and 35 days after transplanting] on starch accumulation, enzyme activity and genes expression in the conversion of sucrose to starch and the relationships among them. The results showed that, compared with conventional basal N management, split application decreased sucrose accumulation by 11.78%, but increased starch accumulation by 11.12% through improving the starch accumulation rate under reduced N supply. The ratio of sucrose synthetase to sucrose phosphate synthase, the enzymatic activity of ADP-glucose pyrophosphorylase (AGPP), starch synthase, and the expression of their corresponding genes were promoted by split application under reduced N supply and were positively correlated with starch accumulation rate. AGPP is the rate-limiting enzyme in starch synthesis in storage roots under different N management strategies. These results indicate that starch accumulation was enhanced by split application through regulating the activity and gene expression of key enzymes involved in the conversion of sucrose to starch under reduced N supply.
科研通智能强力驱动
Strongly Powered by AbleSci AI