过电位
材料科学
分解水
催化作用
交换电流密度
贵金属
密度泛函理论
电子转移
纳米技术
化学工程
物理化学
金属
塔菲尔方程
计算化学
冶金
电极
电化学
光催化
工程类
生物化学
化学
作者
Yiming An,Xia Long,Ming Ma,Jue Hu,He Lin,Dan Zhou,Zheng Xing,Bolong Huang,Shihe Yang
标识
DOI:10.1002/aenm.201901454
摘要
Abstract Currently, in addition to the electroactive non‐noble metal water‐splitting electrocatalysts, a scalable synthetic route and simple activity enhancement strategy is also urgently needed. In particular, the well‐controlled synthesis of the well‐recognized metal–metal nanointer face in a single step remains a key challenge. Here, the synthesis of Cu‐supported Ni 4 Mo nanodots on MoO x nanosheets (Ni 4 Mo/MoO x ) with controllable Ni 4 Mo particle size and d‐band structure is reported via a facile one‐step electrodeposition process. Density functional theory (DFT) calculations reveal that the active open‐shell effect from Ni‐3d‐band optimizes the electronic configuration. The Cu‐substrate enables the surface Ni–Mo alloy dots to be more electron‐rich, forming a local connected electron‐rich network, which boosts the charge transfer for effective binding of O‐related species and proton–electron charge exchange in the hydrogen evolution reaction. The Cu‐supported Ni 4 Mo/MoO x shows an ultralow overpotential of 16 mV at a current density of 10 mA cm −2 in 1 m KOH, demonstrating the smallest overpotential, at loadings as low as 0.27 mg cm −2 , among all non‐noble metal catalysts reported to date. Moreover, an overpotential of 105 mV allows it to achieve a current density of 250 mA cm −2 in 70 °C 30% KOH, a remarkable performance for alkaline hydrogen evolution with competitive potential for applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI