Deep reinforcement learning and its applications in medical imaging and radiation therapy: a survey

强化学习 计算机科学 人工智能 深度学习 机器学习 功能(生物学) 领域(数学分析) 医学影像学 数学分析 数学 进化生物学 生物
作者
Lanyu Xu,Simeng Zhu,Ning Wen
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:67 (22): 22TR02-22TR02 被引量:17
标识
DOI:10.1088/1361-6560/ac9cb3
摘要

Reinforcement learning takes sequential decision-making approaches by learning the policy through trial and error based on interaction with the environment. Combining deep learning and reinforcement learning can empower the agent to learn the interactions and the distribution of rewards from state-action pairs to achieve effective and efficient solutions in more complex and dynamic environments. Deep reinforcement learning (DRL) has demonstrated astonishing performance in surpassing the human-level performance in the game domain and many other simulated environments. This paper introduces the basics of reinforcement learning and reviews various categories of DRL algorithms and DRL models developed for medical image analysis and radiation treatment planning optimization. We will also discuss the current challenges of DRL and approaches proposed to make DRL more generalizable and robust in a real-world environment. DRL algorithms, by fostering the designs of the reward function, agents interactions and environment models, can resolve the challenges from scarce and heterogeneous annotated medical image data, which has been a major obstacle to implementing deep learning models in the clinic. DRL is an active research area with enormous potential to improve deep learning applications in medical imaging and radiation therapy planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
nozero应助Peter采纳,获得50
1秒前
田様应助David采纳,获得20
1秒前
汉堡包应助挤你太美采纳,获得10
1秒前
科研通AI5应助七包辣条采纳,获得10
2秒前
文艺代灵发布了新的文献求助10
2秒前
2秒前
2秒前
上官若男应助桃青采纳,获得10
3秒前
科研小谢发布了新的文献求助10
4秒前
王小能完成签到,获得积分10
4秒前
5秒前
look完成签到,获得积分10
5秒前
xxxxxx完成签到,获得积分20
5秒前
宝宝时代发布了新的文献求助10
5秒前
6秒前
季不住完成签到,获得积分10
6秒前
7秒前
王小能发布了新的文献求助10
8秒前
领导范儿应助mmmz采纳,获得10
8秒前
jw完成签到,获得积分10
8秒前
xxxxxx发布了新的文献求助10
9秒前
11dcc完成签到,获得积分20
10秒前
11秒前
12秒前
Jasper应助MeSs采纳,获得10
16秒前
小蘑菇应助暗能量采纳,获得10
16秒前
宝宝时代完成签到,获得积分10
17秒前
彩虹糖发布了新的文献求助10
17秒前
清爽海白完成签到 ,获得积分10
19秒前
李爱国应助Accepted采纳,获得10
21秒前
21秒前
momo发布了新的文献求助10
23秒前
Hello应助彩虹糖采纳,获得10
24秒前
丘比特应助自觉柠檬采纳,获得10
25秒前
挤你太美发布了新的文献求助10
25秒前
有魅力访曼完成签到,获得积分10
25秒前
27秒前
华仔应助王杰采纳,获得10
28秒前
英俊的铭应助糕糕采纳,获得10
28秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829269
求助须知:如何正确求助?哪些是违规求助? 3371975
关于积分的说明 10470047
捐赠科研通 3091557
什么是DOI,文献DOI怎么找? 1701181
邀请新用户注册赠送积分活动 818284
科研通“疑难数据库(出版商)”最低求助积分说明 770765