A bearing fault diagnosis method without fault data in new working condition combined dynamic model with deep learning

计算机科学 方位(导航) 断层(地质) 人工智能 状态监测 数据转换 数据建模 动态数据 深度学习 数据挖掘 工程类 计算机硬件 数据库 地震学 电气工程 程序设计语言 地质学
作者
Kun Xu,Xianguang Kong,Qibin Wang,Shengkang Yang,Naining Huang,Junji Wang
出处
期刊:Advanced Engineering Informatics [Elsevier BV]
卷期号:54: 101795-101795 被引量:71
标识
DOI:10.1016/j.aei.2022.101795
摘要

Bearing fault diagnosis plays an important role in rotating machinery equipment’s safe and stable operation. However, the fault sample collected from the equipment is seriously absent, which obstacles the establishment of the diagnostic model. In this paper, a novel false-real data synthesis method combined bearing dynamic model with a generated adversarial network is proposed to solve the problem of zero-shot in new condition. Firstly, the bearing dynamic model is constructed to simulate vibration data in different conditions. Secondly, the conversion model is trained by simulation data in different conditions, which will be employed to convert real-world data in the old condition into the conversion data in the new condition. Thirdly, the GAN model is trained by simulation data and real-world data in old condition and finetuned by simulation data and conversion data in the new condition. Finally, simulation data in the new condition are inputted to the finetuned GAN model to obtain generated data in the new condition, and the fault diagnosis model is trained by it. To validate the performance of the proposed method, various comparative experiments are carried out on one rolling bearing dataset. The results indicate that the proposed method can solve the problem of zero-shot in new condition with excellent diagnosis performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAA完成签到,获得积分10
刚刚
Liang完成签到 ,获得积分10
刚刚
1秒前
可靠之玉完成签到,获得积分10
1秒前
难过梦竹发布了新的文献求助10
1秒前
黑色的白鲸完成签到,获得积分10
2秒前
有的没的发布了新的文献求助10
2秒前
plh完成签到,获得积分0
2秒前
YY完成签到,获得积分10
2秒前
zzzz完成签到,获得积分10
3秒前
淡江中学叶湘伦完成签到,获得积分10
3秒前
3秒前
火山蜗牛完成签到,获得积分10
3秒前
东郭秋凌完成签到,获得积分10
4秒前
zx发布了新的文献求助10
4秒前
htm426完成签到,获得积分10
4秒前
4秒前
zhuchenglu完成签到,获得积分10
4秒前
SDM完成签到 ,获得积分10
4秒前
碧蓝的以彤完成签到,获得积分10
5秒前
5秒前
花痴的香菇完成签到,获得积分10
5秒前
打打应助chyang采纳,获得10
6秒前
唐妮完成签到,获得积分10
6秒前
火星上冰珍完成签到,获得积分10
6秒前
龙宝完成签到,获得积分10
6秒前
Crazykk完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
上杉绘梨衣完成签到,获得积分10
9秒前
WEN完成签到,获得积分10
9秒前
10秒前
达古冰川完成签到,获得积分10
10秒前
ljw完成签到,获得积分10
10秒前
凉了的饭菜完成签到,获得积分10
10秒前
平常的老头完成签到,获得积分10
10秒前
科研通AI5应助zhanlang采纳,获得10
10秒前
75986686完成签到,获得积分10
11秒前
11秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Power of High-Throughput Experimentation: General Topics and Enabling Technologies for Synthesis and Catalysis (Volume 1) 200
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827509
求助须知:如何正确求助?哪些是违规求助? 3369757
关于积分的说明 10457657
捐赠科研通 3089465
什么是DOI,文献DOI怎么找? 1699897
邀请新用户注册赠送积分活动 817560
科研通“疑难数据库(出版商)”最低求助积分说明 770263