VMC‐UNet: A Vision Mamba‐CNN U‐Net for Tumor Segmentation in Breast Ultrasound Image

计算机科学
作者
Dongyue Wang,Weiyu Zhao,Kangping Cui,Yi Zhu
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (6)
标识
DOI:10.1002/ima.23222
摘要

ABSTRACT Breast cancer remains one of the most significant health threats to women, making precise segmentation of target tumors critical for early clinical intervention and postoperative monitoring. While numerous convolutional neural networks (CNNs) and vision transformers have been developed to segment breast tumors from ultrasound images, both architectures encounter difficulties in effectively modeling long‐range dependencies, which are essential for accurate segmentation. Drawing inspiration from the Mamba architecture, we introduce the Vision Mamba‐CNN U‐Net (VMC‐UNet) for breast tumor segmentation. This innovative hybrid framework merges the long‐range dependency modeling capabilities of Mamba with the detailed local representation power of CNNs. A key feature of our approach is the implementation of a residual connection method within the U‐Net architecture, utilizing the visual state space (VSS) module to extract long‐range dependency features from convolutional feature maps effectively. Additionally, to better integrate texture and structural features, we have designed a bilinear multi‐scale attention module (BMSA), which significantly enhances the network's ability to capture and utilize intricate feature details across multiple scales. Extensive experiments conducted on three public datasets demonstrate that the proposed VMC‐UNet surpasses other state‐of‐the‐art methods in breast tumor segmentation, achieving Dice coefficients of 81.52% for BUSI, 88.00% for BUS, and 88.96% for STU. The source code is accessible at https://github.com/windywindyw/VMC‐UNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
大腹便便发布了新的文献求助10
2秒前
3秒前
烂漫念柏发布了新的文献求助10
4秒前
祝特通土人完成签到,获得积分10
4秒前
垃圾桶完成签到,获得积分10
4秒前
钟ZJ完成签到,获得积分10
4秒前
cici完成签到 ,获得积分10
5秒前
6秒前
6秒前
7秒前
sgfiii发布了新的文献求助30
7秒前
Lucas应助大腹便便采纳,获得10
8秒前
8秒前
花开富贵发布了新的文献求助10
9秒前
张张小白发布了新的文献求助10
9秒前
309175700@qq.com完成签到,获得积分10
9秒前
99ldt发布了新的文献求助10
10秒前
耽溺完成签到 ,获得积分10
10秒前
传奇3应助memory采纳,获得10
11秒前
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
Ayo发布了新的文献求助10
12秒前
CipherSage应助科研通管家采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
菠萝蜜发布了新的文献求助10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
彭于晏应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
13秒前
zhanyuji发布了新的文献求助10
13秒前
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795197
求助须知:如何正确求助?哪些是违规求助? 3340150
关于积分的说明 10299013
捐赠科研通 3056688
什么是DOI,文献DOI怎么找? 1677141
邀请新用户注册赠送积分活动 805224
科研通“疑难数据库(出版商)”最低求助积分说明 762397