TEC-CNN: Towards Efficient Compressing Convolutional Neural Nets with Low-rank Tensor Decomposition

计算机科学 卷积神经网络 技术 秩(图论) 分解 张量(固有定义) 张量分解 人工智能 数学 组合数学 电离层 生态学 物理 天文 纯数学 生物
作者
Yifan Wang,Liang Feng,F.F. Cai,Lusi Li,Rui Wu,Jie Li
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
标识
DOI:10.1145/3702641
摘要

Most state-of-the-art convolutional neural networks (CNNs) are characterised by excessive parameterisation, leading to a high computational burden. Tensor decomposition has emerged as a model reduction technique for compressing deep neural networks. Previous approaches have predominantly relied on either Tucker decomposition or Canonical Polyadic (CP) decomposition for CNNs. However, CP decomposition exhibits exceptional compression capabilities in comparison to Tucker decomposition, which results in a more pronounced accuracy loss. This paper introduces an efficient model compression method, termed TEC-CNN, designed to achieve significant compression while preserving accuracy levels comparable to those of the original models. In TEC-CNN, convolutional layers are identified to obtain convolutional kernels by analysing given models under the principles of low-rank tensor decomposition, and then, calculating the ranks of convolutional kernels. Furthermore, an efficient decomposition schema for the convolutional kernel is proposed with approximate kernel tensor for reducing parameters. Additionally, a novel format of a convolutional sequence is presented and constructed with a reduced number of parameters to replace the original convolutional layers. Finally, the effectiveness of TEC-CNN is assessed across a range of computer vision tasks. For instance, in CIFAR-100 classification, ResNet18 is compressed to 4.1 MB, while Unext, when applied to image segmentation using the International Skin Imaging Collaboration (ISIC) dataset, is reduced to 3.419 MB. When employed for fire object detection with Yolov7, TEC-CNN achieves a model size reduction of 71.6 MB. Comprehensive experimental results underscore that our approach achieves significant model compression while preserving model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
newton发布了新的文献求助30
1秒前
1秒前
华仔应助WWW采纳,获得10
2秒前
4秒前
Tom47发布了新的文献求助10
4秒前
66完成签到 ,获得积分20
7秒前
xinxin发布了新的文献求助30
7秒前
饱满若灵完成签到,获得积分10
7秒前
李爱国应助幻影采纳,获得10
8秒前
刘佳敏完成签到 ,获得积分10
9秒前
fighting发布了新的文献求助10
9秒前
9秒前
体贴的洋葱完成签到,获得积分10
10秒前
newton完成签到,获得积分10
11秒前
金属玻璃兰兰完成签到,获得积分10
14秒前
orixero应助66采纳,获得10
14秒前
顺心不弱发布了新的文献求助10
15秒前
16秒前
豆子发布了新的文献求助20
18秒前
ding应助枫泾采纳,获得10
18秒前
20秒前
Yyiii发布了新的文献求助10
20秒前
20秒前
汉堡包应助过儿采纳,获得30
20秒前
aliao完成签到,获得积分10
22秒前
22秒前
23秒前
Akim应助豆子采纳,获得10
24秒前
xinxin完成签到,获得积分10
24秒前
生动的雪碧完成签到,获得积分10
24秒前
25秒前
MateoX发布了新的文献求助10
25秒前
26秒前
underoos发布了新的文献求助10
27秒前
秀丽紊发布了新的文献求助10
27秒前
一颗药顽完成签到,获得积分10
27秒前
27秒前
28秒前
无花果应助wyj采纳,获得10
29秒前
Xu发布了新的文献求助10
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818405
求助须知:如何正确求助?哪些是违规求助? 3361530
关于积分的说明 10413272
捐赠科研通 3079791
什么是DOI,文献DOI怎么找? 1693005
邀请新用户注册赠送积分活动 814546
科研通“疑难数据库(出版商)”最低求助积分说明 768193