Sialylation Shields Glycoproteins from Oxidative Stress: Mechanistic Insights into Sialic Acid Oxidation and Structural Stability

化学 唾液酸 糖蛋白 氧化应激 氧化磷酸化 生物化学 生物物理学 生物
作者
Yamei Wang,D. P. Jin,Liping Ren,Ning Wang,Yifei Jia,Zhen Zheng,Wensheng Cai,Haohao Fu,Gongyu Li
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:147 (7): 5828-5838 被引量:6
标识
DOI:10.1021/jacs.4c14454
摘要

Sialylation, a crucial yet labile protein modification, is increasingly recognized for its role in modulating protein structure, function, and stability. While the impact of oxidative stress on protein integrity is well-established, the protective role of sialylation against such damage remains poorly understood. This study employs a microscale low-temperature plasma device to generate a controlled, deep radical oxidation environment mimicking cellular oxidative stress. By subjecting free sialic acids (Neu5Ac and Neu5Gc) to time-resolved deep radical exposure, high-resolution mass spectrometry, and high-fidelity density functional theory calculations, we establish an unprecedented oxidation pathway, revealing unique stepwise side chain oxidation prior to ring opening. Comprehensive radical oxidation maps comprising over 100 oxidative intermediates provide a molecular basis for the higher propensity of Neu5Gc over Neu5Ac in resisting radical oxidation. Further, using human transferrin as a model glycoprotein, we demonstrate the protective role of sialylation against oxidative unfolding. Through a combination of site mapping, enzymatic treatments, and all-ion unfolding ion mobility-mass spectrometry, we identify specific protein sialylation patterns and structural motifs that are crucial for maintaining structural stability under oxidative stress. Our findings provide unprecedented insights into the intricate interplay between sialylation and oxidative stress, highlighting the importance of sialylation in stabilizing protein conformations under various oxidative stresses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
二三发布了新的文献求助10
刚刚
1秒前
1秒前
LIUJIE发布了新的文献求助10
1秒前
Lucas应助散步的小鸽子采纳,获得10
1秒前
明理芷天关注了科研通微信公众号
2秒前
斯文败类应助知行者采纳,获得10
2秒前
2秒前
123zyx完成签到,获得积分10
3秒前
小周小周完成签到,获得积分10
3秒前
Ava应助一壶古酒采纳,获得20
3秒前
3秒前
bkagyin应助病毒遗传学采纳,获得10
5秒前
ZCR完成签到,获得积分10
5秒前
粘豆包发布了新的文献求助10
5秒前
海岸发布了新的文献求助10
5秒前
6秒前
徐家小乐完成签到,获得积分10
6秒前
7秒前
8秒前
黄cc发布了新的文献求助100
8秒前
f冯完成签到,获得积分10
9秒前
感动鞋垫发布了新的文献求助10
10秒前
英俊的铭应助changzm采纳,获得10
10秒前
Hwenjing完成签到,获得积分10
11秒前
gloval完成签到,获得积分10
11秒前
所所应助小维采纳,获得10
13秒前
彭于晏应助海岸采纳,获得10
13秒前
13秒前
由由完成签到,获得积分10
13秒前
13秒前
明理芷天发布了新的文献求助10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
13秒前
情怀应助科研通管家采纳,获得10
14秒前
Jasper应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5264297
求助须知:如何正确求助?哪些是违规求助? 4424541
关于积分的说明 13773360
捐赠科研通 4299650
什么是DOI,文献DOI怎么找? 2359230
邀请新用户注册赠送积分活动 1355402
关于科研通互助平台的介绍 1316750