化学
唾液酸
糖蛋白
氧化应激
氧化磷酸化
生物化学
生物物理学
生物
作者
Yamei Wang,D. P. Jin,Liping Ren,Ning Wang,Yifei Jia,Zhen Zheng,Wensheng Cai,Haohao Fu,Gongyu Li
摘要
Sialylation, a crucial yet labile protein modification, is increasingly recognized for its role in modulating protein structure, function, and stability. While the impact of oxidative stress on protein integrity is well-established, the protective role of sialylation against such damage remains poorly understood. This study employs a microscale low-temperature plasma device to generate a controlled, deep radical oxidation environment mimicking cellular oxidative stress. By subjecting free sialic acids (Neu5Ac and Neu5Gc) to time-resolved deep radical exposure, high-resolution mass spectrometry, and high-fidelity density functional theory calculations, we establish an unprecedented oxidation pathway, revealing unique stepwise side chain oxidation prior to ring opening. Comprehensive radical oxidation maps comprising over 100 oxidative intermediates provide a molecular basis for the higher propensity of Neu5Gc over Neu5Ac in resisting radical oxidation. Further, using human transferrin as a model glycoprotein, we demonstrate the protective role of sialylation against oxidative unfolding. Through a combination of site mapping, enzymatic treatments, and all-ion unfolding ion mobility-mass spectrometry, we identify specific protein sialylation patterns and structural motifs that are crucial for maintaining structural stability under oxidative stress. Our findings provide unprecedented insights into the intricate interplay between sialylation and oxidative stress, highlighting the importance of sialylation in stabilizing protein conformations under various oxidative stresses.
科研通智能强力驱动
Strongly Powered by AbleSci AI