Object localization and edge refinement network for salient object detection

计算机科学 人工智能 GSM演进的增强数据速率 特征(语言学) 模式识别(心理学) 计算机视觉 边缘检测 突出 对象(语法) 变压器 骨干网 图像(数学) 图像处理 电压 物理 哲学 量子力学 语言学 计算机网络
作者
Zhaojian Yao,Luping Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:213: 118973-118973 被引量:15
标识
DOI:10.1016/j.eswa.2022.118973
摘要

Most existing methods mainly input images into a CNN backbone to obtain image features. However, compared with convolutional features, the recently emerging transformer features can more accurately express the meaningful features of images. In this paper, we use a transformer backbone to capture multiple feature layers of an image, and design an Object Localization and Edge Refinement (OLER) Network for saliency detection. Our network is divided into two stages, the first stage for object positioning and the second stage for refining their boundaries. In the first stage, we directly apply multiple feature layers to identify salient regions, where we design an Information Multiple Selection (IMS) module to capture saliency cues for each feature layer. The IMS module contains multiple pathways, each of which is a judgment of the location of saliency information. After the input feature layer is processed by the IMS module, its potential salient object information is mined. The second stage consists of two modules, namely the edge generation module and the edge refinement module. The edge generation module takes the original image and saliency map as inputs, and then outputs two edge maps focusing on different edge ranges. To make the object edges sharp, the original image, initial saliency map and two edge maps are fed into the edge refinement module, and the final saliency map is output. Our network as a whole is relatively simple and easy to build without involving complex components. Experimental results on five public datasets demonstrate that our method has tremendous advantages in terms of not only significantly improving detection accuracy, but also achieving better detection efficiency. The code is available at https://github.com/CKYiu/OLER.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心的小白菜完成签到,获得积分10
刚刚
1秒前
爆米花应助我爱科研采纳,获得10
2秒前
2秒前
香蕉觅云应助Dale采纳,获得10
2秒前
orixero应助白桃味的夏采纳,获得10
2秒前
君莫笑发布了新的文献求助10
2秒前
3秒前
牵墨完成签到,获得积分10
4秒前
Ava应助简单的呆呆采纳,获得10
4秒前
5秒前
ccc2发布了新的文献求助10
5秒前
糖糖糖完成签到,获得积分10
5秒前
fan051500发布了新的文献求助30
6秒前
6秒前
6秒前
6秒前
封25完成签到,获得积分10
7秒前
Bob完成签到,获得积分10
7秒前
Up完成签到,获得积分10
8秒前
俊逸沛菡发布了新的文献求助10
8秒前
爸爸完成签到,获得积分10
8秒前
8秒前
森林木发布了新的文献求助10
9秒前
zui完成签到,获得积分10
9秒前
9秒前
唠叨的胡萝卜完成签到,获得积分10
9秒前
桃桃完成签到,获得积分10
10秒前
10秒前
上官若男应助renyi97采纳,获得10
11秒前
mzry完成签到,获得积分20
11秒前
zhaolei0519发布了新的文献求助10
11秒前
健康的代珊完成签到,获得积分10
12秒前
12秒前
12秒前
王思鲁完成签到,获得积分10
12秒前
大个应助加百莉采纳,获得10
13秒前
谢谢完成签到,获得积分10
13秒前
炸药发布了新的文献求助10
14秒前
14秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Applied Survey Data Analysis (第三版, 2025) 850
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
2023 ASHRAE Handbook HVAC Applications (SI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3872366
求助须知:如何正确求助?哪些是违规求助? 3414673
关于积分的说明 10690214
捐赠科研通 3138982
什么是DOI,文献DOI怎么找? 1731831
邀请新用户注册赠送积分活动 835024
科研通“疑难数据库(出版商)”最低求助积分说明 781656