主成分分析
环境科学
卫星
人工神经网络
辐射传输
线性回归
遥感
数据集
气象学
纬度
计算机科学
大气辐射传输码
大气校正
大气模式
人工智能
机器学习
地质学
大地测量学
地理
物理
量子力学
工程类
航空航天工程
作者
Guido Masiello,Carmine Serio,Pietro Mastro
摘要
In this work, we will show the potential of a nonlinear statistical regressor method based on a Deep Neural Network (DNN) scheme for retrieving XCO2. Toward this objective, we set up a training exercise based on simulated IASI observations using the state-of-the-art radiative transfer mode (RTM) σ-IASI/F2N. A nine-year-long record from 2014 to 2022 of atmospheric state vectors using CAMS reanalysis dataset from ECMWF related to one day of each month at four synoptic hours (00-06-12-18 UTC) has been processed to capture typical seasonal and diurnal cycles, resulting in about 400,000 of IASI-L1 synthetic spectral radiances. In order to provide the regression scheme with the most representative information on the CO2 signature, we implemented principal component analysis (PCA) of different regression features. Specifically, the PCA transform was applied to IASI band-1 (645-1210 cm-1), which is most affected by CO2 absorption, and to atmospheric temperature profiles. For IASI measurements the base of 90 principal components from the EUMETSAT IASI Level one Principal Component Compression (PCC) has been considered. Finally, different locations at various latitudes were selected to validate and evaluate the retrieval scheme's performance. In terms of validation, a set of real IASI soundings was matched with in situ measurements collected at Mauna Loa station, renowned as a background site with minimal regional impact. Preliminary findings demonstrate a high level of accuracy in extracting growth rate, trend, and seasonality from the predictions, showing a correlation greater than 0.9 with the in-situ data.
科研通智能强力驱动
Strongly Powered by AbleSci AI