Profiles of financial toxicity and influencing factors among cancer patients: A latent profile analysis

正式舞会 多项式logistic回归 医学 心理干预 癌症 逻辑回归 多元分析 健康素养 内科学 环境卫生 医疗保健 精神科 机器学习 产科 计算机科学 经济 经济增长
作者
Tian Xiao,Hongyue Zhong,Ruihan Xiao,Ting Chen,li li,Xiaoju Chen
出处
期刊:Research in Social & Administrative Pharmacy [Elsevier BV]
卷期号:20 (2): 137-144 被引量:9
标识
DOI:10.1016/j.sapharm.2023.10.010
摘要

While cancer treatment has improved patient prognosis, it has also become more costly. The high hospitalization expenses for cancer patients place a significant financial burden on individuals, families, and society. To identify the potential categories and characteristics of Financial Toxicity (FT) among cancer patients and explore the associated influencing factors. A cross-sectional study was conducted on 299 cancer patients in southwest China from February 2023 to May 2023(response rate 96.45 %). FT was measured by Financial Toxicity based on Patient-Reported Outcome Measures (COST-PROM), emotional inhibition was measured by the emotional inhibition scale (EIS), and treatment burden was measured by the Treatment Burden Questionnaire (TBQ). We used latent profile analysis (LPA) by Mplus.8.0 to identify latent classes of the FT. Multinomial logistic regression analysis was used to analyze the relevant factors on the different categories. The FT of cancer patients can be identified into 3 groups: high-level (43.1 %), medium-level (36.1 %), and low-level (20.7 %) groups. Literacy, annual household income, health problem dimension scores, verbal inhibition scores, and self-control scores can be the predictors of FT among different profiles. Our findings may provide a new viewpoint for managing FT among cancer patients. Healthcare providers should pay attention to the FT of cancer patients and develop targeted interventions to reduce their FT levels.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
我不是财神完成签到 ,获得积分10
3秒前
zhaohu47完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
lll应助老实的思卉采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
丘比特应助李晓葵采纳,获得10
8秒前
8秒前
8秒前
8秒前
星辰大海应助火星上兰采纳,获得10
9秒前
hjb发布了新的文献求助10
10秒前
Noah发布了新的文献求助30
10秒前
Noah发布了新的文献求助10
10秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4045974
求助须知:如何正确求助?哪些是违规求助? 3583707
关于积分的说明 11390370
捐赠科研通 3310991
什么是DOI,文献DOI怎么找? 1822131
邀请新用户注册赠送积分活动 894327
科研通“疑难数据库(出版商)”最低求助积分说明 816119