Chrysalis-inspired high-toughness low-modulus conductive hydrogel sensor for intelligent sensing

材料科学 聚乙烯醇 韧性 自愈水凝胶 极限抗拉强度 复合材料 明胶 弹性模量 模数 生物医学工程 化学 高分子化学 工程类 生物化学
作者
Yugui Cheng,Simian Fu,Kaiming Jin,Yiying Liu,Jingtong Ma,Deliang Li,Qingying Lyu,Y. Y. Li,Xiaoyang Jiang,Ruonan Liu,Ye Tian
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:498: 155475-155475 被引量:10
标识
DOI:10.1016/j.cej.2024.155475
摘要

Hydrogels displaying both high toughness and flexibility hold substantial practical value. However, it has been challenging to achieve these properties simultaneously. To address this challenge, we developed a special structure hydrogel named PAB-S inspired by chrysalis shell. Astragalus polysaccharide (AP) was copolymerized with polyvinyl alcohol (PVA) and betaine hydrochloride (BH) to prepare a low-modulus hydrogel, PAB. Subsequently, surface modification of the PAB hydrogel using sodium phytate (SP) resulted in the formation of the "shell" structured PAB-S hydrogel. The fracture strength of the shell-structured hydrogel increased by about 0.8 MPa. Meanwhile, PAB-S had a maximum tensile strain of 418 %, a toughness of 6.82 MJ/m3, and a modulus of elasticity of approximately 0.6 MPa. In addition, PAB-S hydrogel offers high strain sensitivity (GF up to 4.7), ultra-low response time of 20 ms. Finally, leveraging 2.4G communication technology and a deep learning (1D-CNN) algorithm, advanced functionalities such as wireless remote intelligent control, and deep learning-based finger grip disorder identification were realized using the PAB-S hydrogel sensor. The PAB-S hydrogel sensor holds promising prospects for applications in fields including deep learning, intelligent sensing, medical rehabilitation, and human–machine synchronization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
JY发布了新的文献求助10
2秒前
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
华仔应助科研通管家采纳,获得10
2秒前
笨笨西装应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
zhonglv7应助科研通管家采纳,获得10
2秒前
望凌烟完成签到,获得积分10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
tcf应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
orixero应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
zhonglv7应助科研通管家采纳,获得10
3秒前
能干彤应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得30
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
焦一丹完成签到 ,获得积分10
3秒前
4秒前
坚定凝安完成签到,获得积分10
4秒前
星星发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
和谐白羊完成签到,获得积分10
6秒前
6秒前
Missy发布了新的文献求助10
7秒前
honey发布了新的文献求助10
7秒前
577发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662345
求助须知:如何正确求助?哪些是违规求助? 4842231
关于积分的说明 15099514
捐赠科研通 4820844
什么是DOI,文献DOI怎么找? 2580317
邀请新用户注册赠送积分活动 1534341
关于科研通互助平台的介绍 1492985