已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Comprehensive Survey of Mamba Architectures for Medical Image Analysis: Classification, Segmentation, Restoration and Beyond

分割 计算机科学 人工智能 数据科学
作者
Shubhi Bansal,A Sreeharish,Madhava Prasath J,S Manikandan,Sreekanth Madisetty,Mohammad Zia Ur Rehman,Chandravardhan Singh Raghaw,Gaurav Duggal,Nagendra Kumar
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2410.02362
摘要

Mamba, a special case of the State Space Model, is gaining popularity as an alternative to template-based deep learning approaches in medical image analysis. While transformers are powerful architectures, they have drawbacks, including quadratic computational complexity and an inability to address long-range dependencies efficiently. This limitation affects the analysis of large and complex datasets in medical imaging, where there are many spatial and temporal relationships. In contrast, Mamba offers benefits that make it well-suited for medical image analysis. It has linear time complexity, which is a significant improvement over transformers. Mamba processes longer sequences without attention mechanisms, enabling faster inference and requiring less memory. Mamba also demonstrates strong performance in merging multimodal data, improving diagnosis accuracy and patient outcomes. The organization of this paper allows readers to appreciate the capabilities of Mamba in medical imaging step by step. We begin by defining core concepts of SSMs and models, including S4, S5, and S6, followed by an exploration of Mamba architectures such as pure Mamba, U-Net variants, and hybrid models with convolutional neural networks, transformers, and Graph Neural Networks. We also cover Mamba optimizations, techniques and adaptations, scanning, datasets, applications, experimental results, and conclude with its challenges and future directions in medical imaging. This review aims to demonstrate the transformative potential of Mamba in overcoming existing barriers within medical imaging while paving the way for innovative advancements in the field. A comprehensive list of Mamba architectures applied in the medical field, reviewed in this work, is available at Github.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
勤劳的冰菱完成签到,获得积分10
刚刚
2秒前
4秒前
cjh发布了新的文献求助10
6秒前
无昵称完成签到 ,获得积分10
8秒前
sagowei发布了新的文献求助10
9秒前
暗号完成签到 ,获得积分10
11秒前
11秒前
平安喜乐完成签到 ,获得积分10
15秒前
xiao_J完成签到,获得积分10
16秒前
sagowei完成签到,获得积分10
16秒前
勤奋的立果完成签到 ,获得积分10
17秒前
迷路向松完成签到,获得积分10
17秒前
oydent完成签到,获得积分10
23秒前
六月初八夜完成签到,获得积分10
23秒前
yetong完成签到 ,获得积分10
24秒前
24秒前
上官若男应助PIEZO2采纳,获得10
24秒前
真实的白翠完成签到 ,获得积分10
25秒前
26秒前
雷半双发布了新的文献求助10
27秒前
27秒前
28秒前
催化剂发布了新的文献求助10
30秒前
天真之桃完成签到,获得积分10
32秒前
何茂郎发布了新的文献求助10
34秒前
王某人完成签到 ,获得积分10
35秒前
超帅柚子完成签到 ,获得积分10
35秒前
37秒前
123123完成签到 ,获得积分10
37秒前
38秒前
Zenglongying发布了新的文献求助10
43秒前
郑鹏飞发布了新的文献求助10
43秒前
七月江城发布了新的文献求助10
43秒前
大模型应助绝尘采纳,获得10
44秒前
情怀应助7788采纳,获得10
46秒前
ktw完成签到,获得积分10
47秒前
123完成签到 ,获得积分10
48秒前
满意一曲发布了新的文献求助10
49秒前
把的蛮耐得烦完成签到,获得积分10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777548
求助须知:如何正确求助?哪些是违规求助? 3322938
关于积分的说明 10212367
捐赠科研通 3038242
什么是DOI,文献DOI怎么找? 1667247
邀请新用户注册赠送积分活动 798068
科研通“疑难数据库(出版商)”最低求助积分说明 758201