Detection of Pulmonary Nodules on Ultra-low Dose Chest Computed Tomography With Deep-learning Image Reconstruction Algorithm

医学 计算机断层摄影术 放射科 断层摄影术 核医学 算法 计算机科学
作者
Wesley Bocquet,R. Bouzerar,G François,Antoine Leleu,C. Renard
出处
期刊:Journal of Thoracic Imaging [Ovid Technologies (Wolters Kluwer)]
卷期号:40 (3) 被引量:1
标识
DOI:10.1097/rti.0000000000000806
摘要

Purpose: To evaluate the accuracy of ultra-low dose (ULD) chest computed tomography (CT), with a radiation exposure equivalent to a 2-view chest x-ray, for pulmonary nodule detection using deep learning image reconstruction (DLIR). Material and Methods: This prospective cross-sectional study included 60 patients referred to our institution for assessment or follow-up of solid pulmonary nodules. All patients underwent low-dose (LD) and ULD chest CT within the same examination session. LD CT data were reconstructed using Adaptive Statistical Iterative Reconstruction-V (ASIR-V), whereas ULD CT data were reconstructed using DLIR and ASIR-V. ULD CT images were reviewed by 2 readers and LD CT images were reviewed by an experienced thoracic radiologist as the reference standard. Quantitative image quality analysis was performed, and the detectability of pulmonary nodules was assessed according to their size and location. Results: The effective radiation dose for ULD CT and LD CT were 0.13±0.01 and 1.16±0.6 mSv, respectively. Over the whole population, LD CT revealed 733 nodules. At ULD, DLIR images significantly exhibited better image quality than ASIR-V images. The overall sensitivity of DLIR reconstruction for the detection of solid pulmonary nodules from the ULD CT series was 93% and 82% for the 2 readers, with a good to excellent agreement with LD CT (ICC=0.82 and 0.66, respectively). The best sensitivities were observed in the middle lobe (97% and 85%, respectively). Conclusions: At ULD, DLIR reconstructions, with minimal radiation exposure that could facilitate large-scale screening, allow the detection of pulmonary nodules with high sensitivity in an unrestricted BMI population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助甜橘采纳,获得10
1秒前
杨阳发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
Mic应助科研通管家采纳,获得10
1秒前
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
BowieHuang应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
3秒前
今后应助肖浩翔采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
3秒前
打打应助科研通管家采纳,获得30
3秒前
zho应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
ding应助汤姆猫采纳,获得20
4秒前
今后应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
LaTeXer应助科研通管家采纳,获得200
4秒前
4秒前
4秒前
ding应助科研通管家采纳,获得10
4秒前
4秒前
狂野宛丝发布了新的文献求助30
4秒前
4秒前
希望天下0贩的0应助OsActin采纳,获得10
4秒前
852应助早点睡觉丶采纳,获得10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599277
求助须知:如何正确求助?哪些是违规求助? 4684870
关于积分的说明 14836779
捐赠科研通 4667525
什么是DOI,文献DOI怎么找? 2537885
邀请新用户注册赠送积分活动 1505359
关于科研通互助平台的介绍 1470776