Integration of Slurry–Total Reflection X-ray Fluorescence and Machine Learning for Monitoring Arsenic and Lead Contamination: Case Study in Itata Valley Agricultural Soils, Chile

污染 土壤水分 泥浆 X射线荧光 农业 环境化学 环境科学 反射(计算机编程) 冶金 荧光 化学 环境工程 土壤科学 地理 材料科学 考古 生态学 计算机科学 生物 物理 程序设计语言 量子力学
作者
Guillermo Medina-González,Yelena Medina,Enrique Muñoz,Paola Andrade,Jordi Cruz,Yakdiel Rodríguez-Gallo,Alison Matus-Bello
出处
期刊:Processes [MDPI AG]
卷期号:12 (8): 1760-1760 被引量:2
标识
DOI:10.3390/pr12081760
摘要

The accuracy of determining arsenic and lead using the optical technique Slurry–Total Reflection X-ray Fluorescence (Slurry-TXRF) was significantly enhanced through the application of a machine learning method, aimed at improving the ecological risk assessment of agricultural soils. The overlapping of the arsenic Kα signal at 10.55 keV with the lead Lα signal at 10.54 keV due to the relatively low resolution of TXRF could compromise the determination of lead. However, by applying a Partial Least Squares (PLS) machine learning algorithm, we mitigated interference variations, resulting in improved selectivity and accuracy. Specifically, the average percentage error was reduced from 15.6% to 9.4% for arsenic (RMSEP improved from 5.6 mg kg−1 to 3.3 mg kg−1) and from 18.9% to 6.8% for lead (RMSEP improved from 12.3 mg kg−1 to 5.03 mg kg−1) compared to the previous univariable model. This enhanced predictive accuracy, within the set of samples concentration range, is attributable to the efficiency of the multivariate calibration first-order advantage in quantifying the presence of interferents. The evaluation of X-ray fluorescence emission signals for 26 different synthetic calibration mixtures confirmed these improvements, overcoming spectral interferences. Additionally, the application of these models enabled the quantification of arsenic and lead in soils from a viticultural subregion of Chile, facilitating the estimation of ecological risk indices in a fast and reliable manner. The results indicate that the contamination level of these soils with arsenic and lead ranges from moderate to considerable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
楠木发布了新的文献求助10
刚刚
刚刚
清风与你2完成签到,获得积分10
刚刚
科目三应助耍酷楷瑞采纳,获得10
刚刚
ceeray23应助南极以南采纳,获得10
2秒前
科研通AI6应助南极以南采纳,获得30
2秒前
啊牙雅完成签到,获得积分10
2秒前
3秒前
4秒前
CapQing完成签到,获得积分10
4秒前
wizard完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
啊牙雅发布了新的文献求助10
6秒前
可靠的枝发布了新的文献求助10
6秒前
关耳发布了新的文献求助10
7秒前
清风与你完成签到,获得积分10
7秒前
烟花应助南西采纳,获得10
7秒前
7秒前
仲夏完成签到,获得积分10
8秒前
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
可爱的函函应助粗暴的鱼采纳,获得10
8秒前
8秒前
freedom发布了新的文献求助10
8秒前
欢子12321完成签到,获得积分10
9秒前
JamesPei应助渺渺采纳,获得10
9秒前
谷槐发布了新的文献求助10
11秒前
隐形的芹菜完成签到,获得积分20
12秒前
田様应助zar采纳,获得10
12秒前
cossen完成签到,获得积分10
12秒前
耍酷楷瑞发布了新的文献求助10
13秒前
研友_8D3QVZ发布了新的文献求助10
13秒前
13秒前
yf关闭了yf文献求助
13秒前
呆毛发布了新的文献求助10
13秒前
刘丰恺发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594302
求助须知:如何正确求助?哪些是违规求助? 4679974
关于积分的说明 14812661
捐赠科研通 4646837
什么是DOI,文献DOI怎么找? 2534882
邀请新用户注册赠送积分活动 1502862
关于科研通互助平台的介绍 1469497