Automatic Detection of Sleep Spindles and its Application in Patients with Acute Disorders of Consciousness

睡眠纺锤 脑电图 持续植物状态 睡眠(系统调用) 计算机科学 听力学 医学 意识 最小意识状态 心理学 神经科学 慢波睡眠 操作系统
作者
Zhenglang Yang,Jiahui Pan
标识
DOI:10.1109/bibm58861.2023.10385924
摘要

Sleep spindles play an important role in human sleep and are considered to have great significance in predicting the prognosis of patients with acute disorders of consciousness (ADOC). Although previous studies have achieved high performance in the automatic detection of sleep spindles in normal subjects, the application in ADOC is very limited, and several challenges remain: 1) how to effectively detect patients' spindles that may decrease in frequency; 2) how to improve the generality of the method to detect more electroencephalogram (EEG) events, such as K-complexes; and 3) how to intuitively reflect the relationship between patients' spindle density and prognosis. To address the above challenges, we propose SpindleCatcher, a deep learning strategy to detect sleep spindles, and design an experiment to investigate the correlation between spindle density and prognosis in ADOC. SpindleCatcher jointly predicts the locations and durations of spindles in EEG, using a convolutional neural network to extract features from raw EEG signals and two modules for localization and classification tasks. Specifically, a frequency attention module is applied to better focus on signals in the desired frequency ranges to improve the performance of ADOC spindle detection. SpindleCatcher can also detect other EEG events, such as K-complexes. Experiments demonstrate that the proposed method exceeds the baseline methods on spindle detection with an overall recall of 0.817 and F1 score of 0.794 on the publicly available MASS2 dataset and an overall recall of 0.707 and F1 score of 0.681 on the patient dataset. The correlation experiment shows that there may be a strong positive correlation between the sleep spindle density of ADOCs and their outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
账户已注销应助不安青牛采纳,获得20
1秒前
jzs完成签到 ,获得积分10
2秒前
e746700020发布了新的文献求助10
2秒前
小泥娃发布了新的文献求助10
2秒前
3秒前
3秒前
Jasper应助大气依萱采纳,获得10
3秒前
tramp应助zewangguo采纳,获得10
3秒前
科研通AI5应助耍酷的剑身采纳,获得30
3秒前
晶晶完成签到,获得积分10
3秒前
zzjjxx完成签到,获得积分10
4秒前
云fly完成签到,获得积分10
5秒前
我是一个无趣的人完成签到,获得积分10
7秒前
towanda发布了新的文献求助10
7秒前
孤独的箴发布了新的文献求助10
7秒前
7秒前
NexusExplorer应助现实的向梦采纳,获得10
8秒前
8秒前
8秒前
Orange应助震动的化蛹采纳,获得10
9秒前
CHENHL发布了新的文献求助50
9秒前
9秒前
9秒前
淡淡安筠发布了新的文献求助20
10秒前
小马甲应助朴素亦绿采纳,获得10
10秒前
sun完成签到 ,获得积分10
11秒前
田田完成签到,获得积分10
11秒前
12秒前
JiaGer完成签到,获得积分10
12秒前
嗯哼发布了新的文献求助10
13秒前
13秒前
小黄发布了新的文献求助10
13秒前
e746700020完成签到,获得积分10
14秒前
ZeKaWa发布了新的文献求助50
14秒前
科研小白完成签到,获得积分10
14秒前
满意的寒凝完成签到 ,获得积分10
14秒前
希望天下0贩的0应助xinying采纳,获得10
16秒前
16秒前
lucky完成签到,获得积分10
17秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820460
求助须知:如何正确求助?哪些是违规求助? 3363453
关于积分的说明 10422477
捐赠科研通 3081797
什么是DOI,文献DOI怎么找? 1695232
邀请新用户注册赠送积分活动 814983
科研通“疑难数据库(出版商)”最低求助积分说明 768791