Delta-Radiomics Based on Dynamic Contrast-Enhanced MRI for Predicting Lymphovascular Invasion in Invasive Breast Cancer

无线电技术 列线图 淋巴血管侵犯 接收机工作特性 医学 逻辑回归 磁共振成像 动态对比度 乳腺癌 放射科 癌症 肿瘤科 内科学 转移
作者
Hong Zheng,Lian Jian,Li Li,Wen Liu,Wei Chen
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:31 (5): 1762-1772 被引量:3
标识
DOI:10.1016/j.acra.2023.11.017
摘要

Rationale and Objectives Treatment strategies for invasive breast cancer require accurate lymphovascular invasion (LVI) predictions. This study aimed to investigate the effectiveness of delta radiomics based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for assessing LVI and develop a nomogram to aid treatment decisions. Materials and Methods Overall, 293 patients with resectable invasive breast cancer underwent preoperative DCE-MRI. Radiomic features were extracted from pre-contrast (A0), first post-contrast (A1), and subtracted images of A0 and A1. Three radiomics models were developed using several data analyses; logistic analyses were performed to identify radiological features to predict the LVI status. A hybrid model integrating both radiological features and optimal radiomics was developed. Receiver operating characteristic analysis was employed to evaluate model performance, using the area under the curve (AUC) as a quantitative metric for discriminative ability. Results In the test set, the Radiomics-Delta model, with 17 radiomic features, had an AUC of 0.781 and accuracy of 0.705. Radiomics-A0, with 10 features, had an AUC of 0.619 and accuracy of 0.523, while Radiomics-A1, with 8 features, had an AUC of 0.715 and accuracy of 0.591. The hybrid model exhibited better performance, with an AUC of 0.868 and accuracy of 0.875, than the radiological and Radiomics-Delta models, with an AUC of 0.759 and 0.781, respectively, and accuracy of 0.773 and 0.705, respectively. Conclusion Compared to Radiomics-A0 and Radiomics-A1, Radiomics-Delta demonstrated superior performance. Moreover, the hybrid model incorporating Radiomics-Delta and radiological features exhibited excellent performance in determining the LVI status in cases of invasive breast cancer. Treatment strategies for invasive breast cancer require accurate lymphovascular invasion (LVI) predictions. This study aimed to investigate the effectiveness of delta radiomics based on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for assessing LVI and develop a nomogram to aid treatment decisions. Overall, 293 patients with resectable invasive breast cancer underwent preoperative DCE-MRI. Radiomic features were extracted from pre-contrast (A0), first post-contrast (A1), and subtracted images of A0 and A1. Three radiomics models were developed using several data analyses; logistic analyses were performed to identify radiological features to predict the LVI status. A hybrid model integrating both radiological features and optimal radiomics was developed. Receiver operating characteristic analysis was employed to evaluate model performance, using the area under the curve (AUC) as a quantitative metric for discriminative ability. In the test set, the Radiomics-Delta model, with 17 radiomic features, had an AUC of 0.781 and accuracy of 0.705. Radiomics-A0, with 10 features, had an AUC of 0.619 and accuracy of 0.523, while Radiomics-A1, with 8 features, had an AUC of 0.715 and accuracy of 0.591. The hybrid model exhibited better performance, with an AUC of 0.868 and accuracy of 0.875, than the radiological and Radiomics-Delta models, with an AUC of 0.759 and 0.781, respectively, and accuracy of 0.773 and 0.705, respectively. Compared to Radiomics-A0 and Radiomics-A1, Radiomics-Delta demonstrated superior performance. Moreover, the hybrid model incorporating Radiomics-Delta and radiological features exhibited excellent performance in determining the LVI status in cases of invasive breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Devin完成签到 ,获得积分10
2秒前
3秒前
阿泽发布了新的文献求助10
6秒前
波里舞完成签到 ,获得积分10
7秒前
oboy应助淡定的半鬼采纳,获得10
7秒前
岁月轮回发布了新的文献求助10
8秒前
8秒前
rio完成签到 ,获得积分10
9秒前
14秒前
15秒前
15秒前
17秒前
18秒前
宋老师发布了新的文献求助50
19秒前
19秒前
小铁匠发布了新的文献求助10
20秒前
20秒前
jun完成签到 ,获得积分10
21秒前
21秒前
林先生完成签到,获得积分10
22秒前
chkskw发布了新的文献求助10
22秒前
CodeCraft应助要减肥的尔安采纳,获得10
23秒前
24秒前
26秒前
潘潘发布了新的文献求助10
27秒前
29秒前
Azyyyy发布了新的文献求助10
30秒前
31秒前
yuani111完成签到,获得积分10
32秒前
chen同学完成签到 ,获得积分10
33秒前
35秒前
36秒前
36秒前
科研通AI2S应助沐风采纳,获得20
38秒前
没所谓完成签到,获得积分20
40秒前
岁月轮回发布了新的文献求助10
41秒前
amber完成签到 ,获得积分10
41秒前
知道发布了新的文献求助10
42秒前
超级无敌万能小金毛完成签到,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779966
求助须知:如何正确求助?哪些是违规求助? 3325374
关于积分的说明 10222718
捐赠科研通 3040551
什么是DOI,文献DOI怎么找? 1668879
邀请新用户注册赠送积分活动 798857
科研通“疑难数据库(出版商)”最低求助积分说明 758612