Intelligent Diagnosis of Dual-Channel Parallel Rolling Bearings Based on Feature Fusion

残余物 冗余(工程) 计算机科学 卷积神经网络 方位(导航) 特征提取 人工智能 变压器 模式识别(心理学) 工程类 算法 电压 操作系统 电气工程
作者
Haike Guo,Xiaoqiang Zhao
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (7): 10640-10655 被引量:3
标识
DOI:10.1109/jsen.2024.3362402
摘要

In practical engineering, due to the complex and variable working conditions of rolling bearings and the highly nonlinear characteristics of fault signals, especially in the cases of limited fault samples, it is very difficult to achieve satisfactory diagnostic results with the traditional rolling bearing fault diagnosis method. Therefore, in this paper, a two-way parallel rolling bearing intelligent diagnosis method based on multi-scale center cascaded adaptive dynamic convolutional residual network (MCADCRN) and Swin transformer (SwinT) is proposed. Firstly, the original signals are transformed into the two-dimensional time-frequency map by using continuous wavelet transform to preserve the time-frequency characteristics of the original signals. Secondly, a multi-scale center-cascaded dynamic convolutional residual block (MCDCRB) and a multi-dimensional coordinate attention mechanism (MDCAM) are designed to extract the fault features. Through multi-scale convolutional operations, MCDCRB can capture the feature information in different frequency ranges and use a cascade structure to progressively extract higher-level features. At the same time, MDCAM dynamically selects and fuses the features of different scales to reduce the information redundancy and capture the key features; next, the MCADCRN network is constructed by multiple MCDCRBs and a MDCAM to capture the local features; then, the global features of the fault information are captured by using the mechanism of the moving window self-attention in the Swin transformer network; Finally, the local features are fused with the global features and the recognition results are output. The experimental validation is carried out with two different bearing datasets, and the average diagnostic accuracy of the proposed method under variable operating conditions is 99.64%, which is 1.97, 1.53, 1.71, 1.16, and 2.84 percentage points higher than that of the five advanced methods, respectively. Under limited sample conditions, especially when there are only 50 samples, the diagnostic accuracies of the proposed method are 96.42% and 90.89%, respectively. The results verifies the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助股价采纳,获得10
刚刚
打打应助www采纳,获得10
刚刚
自信若之发布了新的文献求助10
1秒前
1秒前
彭于彦祖应助wuming7890采纳,获得30
1秒前
1秒前
px完成签到 ,获得积分10
1秒前
喜悦的飞机完成签到,获得积分10
1秒前
Abelsci完成签到,获得积分0
1秒前
NexusExplorer应助秋天采纳,获得10
2秒前
jokery完成签到,获得积分10
3秒前
祁乐安完成签到,获得积分20
4秒前
酷酷凝云发布了新的文献求助10
4秒前
Future驳回了Ava应助
4秒前
舒适大米发布了新的文献求助10
5秒前
木子发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
9秒前
凝若霜晨完成签到,获得积分20
9秒前
9秒前
我是老大应助研友_WnqWp8采纳,获得10
9秒前
SciGPT应助维生素TD采纳,获得10
10秒前
ISLAND发布了新的文献求助10
10秒前
10秒前
HWei完成签到,获得积分10
10秒前
英姑应助AHR采纳,获得10
11秒前
XuX完成签到 ,获得积分10
12秒前
liuniuniu发布了新的文献求助10
12秒前
复杂硬币发布了新的文献求助10
12秒前
cherish发布了新的文献求助10
13秒前
13秒前
一一完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
14秒前
可爱中心完成签到,获得积分10
14秒前
钱钱完成签到,获得积分10
14秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4095415
求助须知:如何正确求助?哪些是违规求助? 3633556
关于积分的说明 11517532
捐赠科研通 3344280
什么是DOI,文献DOI怎么找? 1838000
邀请新用户注册赠送积分活动 905541
科研通“疑难数据库(出版商)”最低求助积分说明 823220