Intelligent Diagnosis of Dual-Channel Parallel Rolling Bearings Based on Feature Fusion

残余物 冗余(工程) 计算机科学 卷积神经网络 方位(导航) 特征提取 人工智能 变压器 模式识别(心理学) 工程类 算法 电压 操作系统 电气工程
作者
Haike Guo,Xiaoqiang Zhao
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (7): 10640-10655 被引量:3
标识
DOI:10.1109/jsen.2024.3362402
摘要

In practical engineering, due to the complex and variable working conditions of rolling bearings and the highly nonlinear characteristics of fault signals, especially in the cases of limited fault samples, it is very difficult to achieve satisfactory diagnostic results with the traditional rolling bearing fault diagnosis method. Therefore, in this paper, a two-way parallel rolling bearing intelligent diagnosis method based on multi-scale center cascaded adaptive dynamic convolutional residual network (MCADCRN) and Swin transformer (SwinT) is proposed. Firstly, the original signals are transformed into the two-dimensional time-frequency map by using continuous wavelet transform to preserve the time-frequency characteristics of the original signals. Secondly, a multi-scale center-cascaded dynamic convolutional residual block (MCDCRB) and a multi-dimensional coordinate attention mechanism (MDCAM) are designed to extract the fault features. Through multi-scale convolutional operations, MCDCRB can capture the feature information in different frequency ranges and use a cascade structure to progressively extract higher-level features. At the same time, MDCAM dynamically selects and fuses the features of different scales to reduce the information redundancy and capture the key features; next, the MCADCRN network is constructed by multiple MCDCRBs and a MDCAM to capture the local features; then, the global features of the fault information are captured by using the mechanism of the moving window self-attention in the Swin transformer network; Finally, the local features are fused with the global features and the recognition results are output. The experimental validation is carried out with two different bearing datasets, and the average diagnostic accuracy of the proposed method under variable operating conditions is 99.64%, which is 1.97, 1.53, 1.71, 1.16, and 2.84 percentage points higher than that of the five advanced methods, respectively. Under limited sample conditions, especially when there are only 50 samples, the diagnostic accuracies of the proposed method are 96.42% and 90.89%, respectively. The results verifies the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夜白应助科研通管家采纳,获得20
1秒前
烟花应助科研通管家采纳,获得10
1秒前
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
2秒前
缥缈纲应助科研通管家采纳,获得10
2秒前
缥缈纲应助科研通管家采纳,获得30
2秒前
可口可乐发布了新的文献求助10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
夜白应助科研通管家采纳,获得30
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
4秒前
zhangzi完成签到,获得积分10
5秒前
CipherSage应助YangSY采纳,获得10
6秒前
Young完成签到,获得积分10
7秒前
小写发布了新的文献求助10
9秒前
彭于晏应助Orchid采纳,获得10
11秒前
波里舞完成签到 ,获得积分10
12秒前
Hiram完成签到,获得积分10
13秒前
14秒前
Singularity应助lizhiqian2024采纳,获得10
15秒前
16秒前
17秒前
夏天呀完成签到,获得积分10
17秒前
fang完成签到,获得积分10
18秒前
Zhou发布了新的文献求助30
20秒前
眯眯眼的鞋垫完成签到,获得积分10
20秒前
21秒前
Qyyy发布了新的文献求助10
23秒前
www完成签到 ,获得积分10
25秒前
伊yan完成签到 ,获得积分10
25秒前
TBH完成签到,获得积分10
27秒前
28秒前
慕青应助可口可乐采纳,获得10
28秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801065
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329750
捐赠科研通 3063074
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726