Developing a novel image marker to predict the clinical outcome of neoadjuvant chemotherapy (NACT) for ovarian cancer patients

化疗 卵巢癌 肿瘤科 医学 内科学 新辅助治疗 癌症 放射科 乳腺癌
作者
Ke Zhang,Neman Abdoli,Patrik Gilley,Youkabed Sadri,Xuxin Chen,Theresa Thai,Lauren Dockery,Kathleen N. Moore,Robert S. Mannel,Yuchen Qiu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:172: 108240-108240 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108240
摘要

Neoadjuvant chemotherapy (NACT) is one kind of treatment for advanced stage ovarian cancer patients. However, due to the nature of tumor heterogeneity, the clinical outcomes to NACT vary significantly among different subgroups. Partial responses to NACT may lead to suboptimal debulking surgery, which will result in adverse prognosis. To address this clinical challenge, the purpose of this study is to develop a novel image marker to achieve high accuracy prognosis prediction of NACT at an early stage. For this purpose, we first computed a total of 1373 radiomics features to quantify the tumor characteristics, which can be grouped into three categories: geometric, intensity, and texture features. Second, all these features were optimized by principal component analysis algorithm to generate a compact and informative feature cluster. This cluster was used as input for developing and optimizing support vector machine (SVM) based classifiers, which indicated the likelihood of receiving suboptimal cytoreduction after the NACT treatment. Two different kernels for SVM algorithm were explored and compared. A total of 42 ovarian cancer cases were retrospectively collected to validate the scheme. A nested leave-one-out cross-validation framework was adopted for model performance assessment. The results demonstrated that the model with a Gaussian radial basis function kernel SVM yielded an AUC (area under the ROC [receiver characteristic operation] curve) of 0.806 ± 0.078. Meanwhile, this model achieved overall accuracy (ACC) of 83.3%, positive predictive value (PPV) of 81.8%, and negative predictive value (NPV) of 83.9%. This study provides meaningful information for the development of radiomics based image markers in NACT treatment outcome prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
端庄的皮卡丘完成签到,获得积分10
1秒前
yue发布了新的文献求助10
1秒前
Julie完成签到 ,获得积分10
1秒前
1秒前
CodeCraft应助我是雅婷采纳,获得10
1秒前
难过的小甜瓜完成签到,获得积分10
2秒前
泥撑完成签到,获得积分10
2秒前
凑阿库娅发布了新的文献求助10
2秒前
xy发布了新的文献求助10
2秒前
Grinder发布了新的文献求助10
2秒前
香蕉觅云应助12day采纳,获得10
3秒前
Dark_Moon应助BruceQ采纳,获得50
3秒前
小高同学完成签到,获得积分10
3秒前
KKLD发布了新的文献求助10
3秒前
mysci发布了新的文献求助10
4秒前
4秒前
knmno2应助cuc采纳,获得30
4秒前
到江南散步完成签到,获得积分10
4秒前
子不语发布了新的文献求助10
4秒前
Aprial完成签到,获得积分10
6秒前
yuhui完成签到,获得积分10
6秒前
小田心发布了新的文献求助10
6秒前
昏睡的蟠桃应助Alex采纳,获得200
6秒前
O(∩_∩)O哈哈~完成签到,获得积分10
6秒前
yxy999完成签到,获得积分10
7秒前
儒雅的不愁完成签到 ,获得积分10
7秒前
7秒前
linxm7完成签到,获得积分10
8秒前
xy完成签到,获得积分10
8秒前
yuhui发布了新的文献求助10
8秒前
Obliviate完成签到,获得积分10
9秒前
所所应助盈盈12采纳,获得10
9秒前
keyanxiaochong完成签到,获得积分10
9秒前
羽言完成签到,获得积分10
9秒前
吃鱼的猫完成签到 ,获得积分10
10秒前
10秒前
清风完成签到 ,获得积分10
10秒前
FashionBoy应助KKLD采纳,获得10
10秒前
Grinder完成签到 ,获得积分10
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795803
求助须知:如何正确求助?哪些是违规求助? 3340820
关于积分的说明 10302439
捐赠科研通 3057329
什么是DOI,文献DOI怎么找? 1677679
邀请新用户注册赠送积分活动 805534
科研通“疑难数据库(出版商)”最低求助积分说明 762642