An Efficient Single Image De-Raining Model With Decoupled Deep Networks

计算机科学 人工智能 图像处理 图像(数学) 计算机视觉 模式识别(心理学) 算法
作者
W. Li,Gang Chen,Yi Chang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 69-81 被引量:2
标识
DOI:10.1109/tip.2023.3335822
摘要

Single image de-raining is an emerging paradigm for many outdoor computer vision applications since rain streaks can significantly degrade the visibility and render the function compromised. The introduction of deep learning (DL) has brought about substantial advancement on de-raining methods. However, most existing DL-based methods use single homogeneous network architecture to generate de-rained images in a general image restoration manner, ignoring the discrepancy between rain location detection and rain intensity estimation. We find that this discrepancy would cause feature interference and representation ability degradation problems which significantly affect de-raining performance. In this paper, we propose a novel heterogeneous de-raining architecture aiming to decouple rain location detection and rain intensity estimation (DLINet). For these two subtasks, we provide dedicated network structures according to their differential properties to meet their respective performance requirements. To coordinate the decoupled subnetworks, we develop a high-order collaborative network learning the dynamic inter-layer interactions between rain location and intensity. To effectively supervise the decoupled subnetworks during training, we propose a novel training strategy that imposes task-oriented supervision using the label learned via joint training. Extensive experiments on synthetic datasets and real-world rainy scenes demonstrate that the proposed method has great advantages over existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shawn完成签到,获得积分10
刚刚
lxr2发布了新的文献求助10
刚刚
1秒前
蓝天完成签到,获得积分10
1秒前
万能图书馆应助林林采纳,获得10
3秒前
霸气的梦露完成签到,获得积分10
4秒前
科研通AI2S应助memory采纳,获得10
5秒前
ttx发布了新的文献求助10
5秒前
6秒前
7秒前
jiangcai完成签到,获得积分10
10秒前
orixero应助Helium采纳,获得10
11秒前
12秒前
Common完成签到,获得积分10
13秒前
小小雨泪发布了新的文献求助10
13秒前
zp6666tql完成签到 ,获得积分10
14秒前
謃河鷺起完成签到,获得积分10
15秒前
yyy发布了新的文献求助30
16秒前
会飞的扁担完成签到,获得积分10
17秒前
鱼饼完成签到 ,获得积分10
18秒前
DianaLee完成签到 ,获得积分10
19秒前
21秒前
21秒前
南庭完成签到,获得积分10
21秒前
乔一乔完成签到,获得积分10
22秒前
23秒前
26秒前
柳叶刀的终极传人完成签到,获得积分10
30秒前
JamesPei应助Shelley采纳,获得10
30秒前
31秒前
俭朴映阳发布了新的文献求助10
34秒前
38秒前
yinshan完成签到 ,获得积分10
39秒前
留白完成签到 ,获得积分10
43秒前
何浏亮发布了新的文献求助10
43秒前
43秒前
47秒前
科研顺利完成签到 ,获得积分10
47秒前
48秒前
羊羽完成签到,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779522
求助须知:如何正确求助?哪些是违规求助? 3325020
关于积分的说明 10220898
捐赠科研通 3040147
什么是DOI,文献DOI怎么找? 1668632
邀请新用户注册赠送积分活动 798728
科研通“疑难数据库(出版商)”最低求助积分说明 758522