DAGL-Faster: Domain adaptive faster r-cnn for vehicle object detection in rainy and foggy weather conditions

计算机科学 卷积神经网络 人工智能 水准点(测量) 领域(数学分析) 目标检测 恶劣天气 计算机视觉 算法 模式识别(心理学) 数学 气象学 地理 数学分析 大地测量学
作者
Mingdi Hu,Yi Wu,Yize Yang,Jiulun Fan,Bing‐Yi Jing
出处
期刊:Displays [Elsevier BV]
卷期号:79: 102484-102484 被引量:16
标识
DOI:10.1016/j.displa.2023.102484
摘要

Convolutional neural networks (CNNs) have made remarkable progress in detecting vehicle objects in normal weather conditions. However, the performance of these networks deteriorates when faced with rain and fog, as these conditions degrade image quality and cause blurring. The network models trained on clear images perform poorly on rainy and foggy images due to the differences in distribution between normal weather and adverse weather conditions, leading to domain bias. To address this challenge, we present a novel algorithm called DAGL-Faster (Domain Adaptive Global-Local Alignment Faster RCNN) , which enables domain-adaptive vehicle object detection specifically for rainy and foggy weather. DAGL-Faster extends the Faster RCNN framework by incorporating three domain classifiers. These classifiers aid the network in extracting features that are invariant to the domain differences between the source domain (normal weather) and the target domains (rain or fog). The algorithm tackles the domain dissimilarities from three perspectives: local image-level, global image-level, and instance-level. Additionally, it introduces consistency regularization to facilitate simultaneous alignment at the image-level and instance-level, optimizing the overall alignment effect. Through extensive experiments, we demonstrate the efficacy of DAGL-Faster on two benchmark datasets: Foggy Cityscapes and Rain Vehicle Color-24. The algorithm achieves an impressive mean average precision (mAP) of up to 36.7% on the Foggy Cityscapes dataset and 49.79% on the Rain Vehicle Color-24 dataset. Moreover, DAGL-Faster demonstrates superior computational efficiency, with a processing time of 1.9 seconds per image using a single GTX 1080 Ti GPU. These results surpass state-of-the-art algorithms for popular domain adaptive object detection methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
叶枫完成签到,获得积分10
1秒前
lulu完成签到,获得积分10
1秒前
1秒前
2秒前
3秒前
南相完成签到,获得积分10
3秒前
小杜同学发布了新的文献求助10
3秒前
lulu发布了新的文献求助10
3秒前
ting完成签到,获得积分10
4秒前
wyq发布了新的文献求助10
4秒前
小鱼完成签到,获得积分10
5秒前
科研通AI5应助安静青亦采纳,获得10
5秒前
鹤轸发布了新的文献求助10
5秒前
沉默的凝云完成签到,获得积分20
6秒前
大模型应助胡树采纳,获得10
6秒前
ding应助luhanqi采纳,获得10
6秒前
wbing完成签到,获得积分10
6秒前
000000完成签到,获得积分10
7秒前
重要的哈密瓜完成签到 ,获得积分10
7秒前
majuanwei发布了新的文献求助10
7秒前
七七八八发布了新的文献求助10
8秒前
啦啦啦完成签到,获得积分10
8秒前
8秒前
Loooong完成签到,获得积分0
9秒前
兔兔发布了新的文献求助10
9秒前
9秒前
9秒前
科研通AI5应助樊念烟采纳,获得10
9秒前
段康怡完成签到,获得积分10
11秒前
11秒前
11秒前
桐桐应助llm采纳,获得30
11秒前
wanci应助许初采纳,获得10
12秒前
烟花应助不会飞的笨笨子采纳,获得10
12秒前
wuhoo发布了新的文献求助10
12秒前
13秒前
14秒前
飞云发布了新的文献求助10
14秒前
清脆的一斩完成签到,获得积分10
15秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834665
求助须知:如何正确求助?哪些是违规求助? 3377161
关于积分的说明 10496785
捐赠科研通 3096583
什么是DOI,文献DOI怎么找? 1705068
邀请新用户注册赠送积分活动 820438
科研通“疑难数据库(出版商)”最低求助积分说明 772031