Genetic and phenotypic associations of frailty with cardiovascular indicators and behavioral characteristics

表型 计算机科学 遗传学 生物 基因
作者
Yihan Chen,Siying Lin,Shuangyu Yang,Mengling Qi,Yu Ren,Chong Tian,Shitian Wang,Yuedong Yang,Jianzhao Gao,Huiying Zhao
出处
期刊:Journal of Advanced Research [Elsevier BV]
标识
DOI:10.1016/j.jare.2024.06.012
摘要

Frailty Index (FI) is a common measure of frailty, which has been advocated as a routine clinical test by many guidelines. The genetic and phenotypic relationships of FI with cardiovascular indicators (CIs) and behavioral characteristics (BCs) are unclear, which has hampered ability to monitor FI using easily collected data. This study is designed to investigate the genetic and phenotypic associations of frailty with CIs and BCs, and further to construct a model to predict FI. Genetic relationships of FI with 288 CIs and 90 BCs were assessed by the cross-trait LD score regression (LDSC) and Mendelian randomization (MR). The phenotypic data of these CIs and BCs were integrated with a machine-learning model to predict FI of individuals in UK-biobank. The relationships of the predicted FI with risks of type 2 diabetes (T2D) and neurodegenerative diseases were tested by the Kaplan-Meier estimator and Cox proportional hazards model. MR revealed putative causal effects of seven CIs and eight BCs on FI. These CIs and BCs were integrated to establish a model for predicting FI. The predicted FI is significantly correlated with the observed FI (Pearson correlation coefficient = 0.660, P-value = 4.96 × 10-62). The prediction model indicated "usual walking pace" contributes the most to prediction. Patients who were predicted with high FI are in significantly higher risk of T2D (HR = 2.635, P < 2 × 10-16) and neurodegenerative diseases (HR = 2.307, P = 1.62 × 10-3) than other patients. This study supports associations of FI with CIs and BCs from genetic and phenotypic perspectives. The model that is developed by integrating easily collected CIs and BCs data in predicting FI has the potential to monitor disease risk.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
orixero应助亢kxh采纳,获得10
1秒前
Owen应助健忘雁荷采纳,获得10
4秒前
Annabelame发布了新的文献求助10
5秒前
情怀应助小羊睡饱了采纳,获得10
5秒前
商陆完成签到,获得积分20
6秒前
6秒前
6秒前
NgiNgu完成签到 ,获得积分10
7秒前
everglow发布了新的文献求助10
7秒前
9秒前
9秒前
11秒前
司马三问完成签到,获得积分20
11秒前
quietlife发布了新的文献求助10
12秒前
wonderful发布了新的文献求助10
12秒前
14秒前
15秒前
上官若男应助周小鱼采纳,获得10
15秒前
16秒前
健忘雁荷发布了新的文献求助10
16秒前
17秒前
满眼星辰发布了新的文献求助10
17秒前
笨笨的完成签到 ,获得积分10
20秒前
21秒前
安详芝麻发布了新的文献求助10
24秒前
袁庚完成签到 ,获得积分10
25秒前
26秒前
Billy应助科研通管家采纳,获得10
26秒前
Alex应助科研通管家采纳,获得20
26秒前
quietlife完成签到,获得积分10
26秒前
丘比特应助科研通管家采纳,获得20
26秒前
花成花发布了新的文献求助10
27秒前
和谐的寄凡完成签到,获得积分10
28秒前
新念发布了新的文献求助20
29秒前
琳琳完成签到,获得积分10
29秒前
30秒前
31秒前
qazx完成签到 ,获得积分10
32秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831507
求助须知:如何正确求助?哪些是违规求助? 3373721
关于积分的说明 10481076
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702910
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771307