HVConv: Horizontal and Vertical Convolution for Remote Sensing Object Detection

遥感 地质学 计算机科学
作者
J. Chen,Qifeng Lin,Haibin Huang,Yuanlong Yu,Daoye Zhu,Gang Fu
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:16 (11): 1880-1880 被引量:3
标识
DOI:10.3390/rs16111880
摘要

Generally, the interesting objects in aerial images are completely different from objects in nature, and the remote sensing objects in particular tend to be more distinctive in aspect ratio. The existing convolutional networks have equal aspect ratios of the receptive fields, which leads to receptive fields either containing non-relevant information or being unable to fully cover the entire object. To this end, we propose Horizontal and Vertical Convolution, which is a plug-and-play module to address different aspect ratio problems. In our method, we introduce horizontal convolution and vertical convolution to expand the receptive fields in the horizontal and vertical directions, respectively, to reduce redundant receptive fields, so that remote sensing objects with different aspect ratios can achieve better receptive fields coverage, thereby achieving more accurate feature representation. In addition, we design an attention module to dynamically aggregate these two sub-modules to achieve more accurate feature coverage. Extensive experimental results on the DOTA and HRSC2016 datasets show that our HVConv achieves accuracy improvements in diverse detection architectures and obtains SOTA accuracy (mAP score of 77.60% with DOTA single-scale training and mAP score of 81.07% with DOTA multi-scale training). Various ablation studies were conducted as well, which is enough to verify the effectiveness of our model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZZZ333完成签到,获得积分10
刚刚
1秒前
1秒前
羡鱼完成签到,获得积分10
2秒前
CipherSage应助deepseek采纳,获得10
2秒前
Qiao发布了新的文献求助10
2秒前
2秒前
ecnu搬砖人完成签到 ,获得积分20
3秒前
3秒前
3秒前
3秒前
Mike发布了新的文献求助10
4秒前
张冰倩完成签到 ,获得积分10
4秒前
4秒前
tt发布了新的文献求助30
5秒前
5秒前
6秒前
噜噜米发布了新的文献求助10
6秒前
6秒前
黄石发布了新的文献求助10
6秒前
naiyouqiu1989完成签到,获得积分10
7秒前
小雪糕发布了新的文献求助10
7秒前
和谐半青完成签到,获得积分20
8秒前
ZHZ完成签到 ,获得积分10
9秒前
9秒前
happyou发布了新的文献求助10
9秒前
奋斗的元珊完成签到,获得积分10
10秒前
10秒前
迅速奄发布了新的文献求助10
10秒前
Aoka发布了新的文献求助10
10秒前
wuy完成签到,获得积分10
10秒前
爆米花应助风趣的紫菜采纳,获得30
11秒前
hy应助润润轩轩采纳,获得10
12秒前
12秒前
YY发布了新的文献求助10
12秒前
12秒前
13秒前
YUMI发布了新的文献求助10
13秒前
天羽世晴发布了新的文献求助10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
有机化学图表解 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837986
求助须知:如何正确求助?哪些是违规求助? 3380201
关于积分的说明 10512925
捐赠科研通 3099817
什么是DOI,文献DOI怎么找? 1707224
邀请新用户注册赠送积分活动 821558
科研通“疑难数据库(出版商)”最低求助积分说明 772717