Recent advancement of remaining useful life prediction of lithium-ion battery in electric vehicle applications: A review of modelling mechanisms, network configurations, factors, and outstanding issues

可靠性工程 电池(电) 预测(人工智能) 计算机科学 可靠性(半导体) 过程(计算) 风险分析(工程) 工程类 机器学习 物理 功率(物理) 量子力学 医学 操作系统
作者
M. S. Reza,M. Mannan,Muhamad Mansor,Pin Jern Ker,T.M.I. Mahlia,M. A. Hannan
出处
期刊:Energy Reports [Elsevier BV]
卷期号:11: 4824-4848 被引量:18
标识
DOI:10.1016/j.egyr.2024.04.039
摘要

The remaining useful life (RUL) prediction of lithium-ion batteries (LIBs) plays a crucial role in battery management, safety assurance, and the anticipation of maintenance needs for reliable electric vehicle (EV) operation. An efficient prediction of RUL can ensure its safe operation and prevent both internal and external failures, as well as avoid any unwanted catastrophic events. However, achieving precise RUL prediction for electric vehicles presents a challenging task due to several issues related to intricate operational characteristics and dynamic shifts in model parameters throughout the aging process, battery parameters data extraction, data preprocessing, and hyperparameters tuning of the prediction model. This phenomenon significantly impacts the advancement of electric vehicle technology. To address these challenges, this study offers a comprehensive overview of various RUL prediction methods, presenting a comparative analysis of their outcomes, advantages, drawbacks, and associated research constraints. Emphasis is placed on the necessity of a battery management system (BMS) to ensure the safe and reliable functioning of LIBs. The review delves into crucial implementation factors, including battery test bench considerations, data selection, feature extraction, data preprocessing, performance evaluation indicators, and hyperparameter tuning. Additionally, the issues and challenges related to RUL prediction approaches such as; thermal runaway, material selection, cell balancing, battery aging, relaxation impact, training algorithms, data acquisition, and hyperparameter tuning were outlined to provide an in-depth understanding of the recent situations. The outcome of this review comprehensively examines various methods for predicting the RUL of LIB in EV applications, offering insights into their advantages, limitations, and research challenges. Recommendations for future trends in LIBs technology comprise enhancing prognostic accuracy and developing robust approaches to guarantee sustainable operation and management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路冰完成签到,获得积分10
刚刚
读心理学导致的完成签到,获得积分10
1秒前
1秒前
王灿灿完成签到,获得积分10
1秒前
章铭-111完成签到,获得积分10
2秒前
DADing完成签到,获得积分10
2秒前
Coinish丶Fuhua完成签到,获得积分10
2秒前
光亮外套完成签到 ,获得积分10
2秒前
甜美的秋凌完成签到,获得积分10
3秒前
001完成签到,获得积分10
3秒前
工艺员完成签到,获得积分10
4秒前
CongCong0303发布了新的文献求助10
4秒前
4秒前
gudujian870928完成签到,获得积分10
5秒前
震动的小草完成签到,获得积分10
5秒前
大鸭梨完成签到,获得积分10
5秒前
Zard完成签到,获得积分10
5秒前
6秒前
hhh发布了新的文献求助10
7秒前
xlk2222完成签到,获得积分10
7秒前
Cristina2024完成签到,获得积分10
7秒前
乐观健柏完成签到,获得积分10
7秒前
8秒前
8秒前
9秒前
欧大大完成签到,获得积分10
10秒前
自信天发布了新的文献求助10
10秒前
勤劳的沛山完成签到 ,获得积分10
10秒前
Xieyusen完成签到,获得积分10
11秒前
mooser完成签到,获得积分10
11秒前
上杉绘梨衣完成签到,获得积分10
11秒前
大方的若山完成签到,获得积分10
11秒前
丘比特应助Yuan88采纳,获得10
11秒前
做梦的鱼完成签到,获得积分10
11秒前
旭日发布了新的文献求助10
12秒前
12秒前
www发布了新的文献求助30
12秒前
HtObama完成签到,获得积分10
13秒前
干净思远完成签到,获得积分10
13秒前
hhh完成签到,获得积分10
13秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4048814
求助须知:如何正确求助?哪些是违规求助? 3586497
关于积分的说明 11396030
捐赠科研通 3313232
什么是DOI,文献DOI怎么找? 1822750
邀请新用户注册赠送积分活动 894716
科研通“疑难数据库(出版商)”最低求助积分说明 816467