Combining Remotely Sensed Evapotranspiration and an Agroecosystem Model to Estimate Center‐Pivot Irrigation Water Use at High Spatio‐Temporal Resolution

蒸散量 灌溉 环境科学 水文学(农业) 用水 灌溉管理 中心支点灌溉 遥感 地理 工程类 生态学 生物 岩土工程
作者
Jingwen Zhang,Kaiyu Guan,Wang Zhou,Chongya Jiang,Bin Peng,Ming Pan,R. F. Grant,Trenton E. Franz,Andrew E. Suyker,Yi Yang,Xiaohong Chen,Kairong Lin,Zewei Ma
出处
期刊:Water Resources Research [Wiley]
卷期号:59 (3) 被引量:9
标识
DOI:10.1029/2022wr032967
摘要

Abstract Estimating irrigation water use accurately is critical for sustainable irrigation and studying terrestrial water cycle in irrigated croplands. However, irrigation is not monitored in most places, and current estimations of irrigation water use has coarse spatial and/or temporal resolutions. This study aims to estimate irrigation water use at the daily and field scale through the proposed model‐data fusion framework, which is achieved by particle filtering with two configurations (concurrent, CON, and sequential, SEQ) by assimilating satellite‐based evapotranspiration (ET) observations into an advanced agroecosystem model, ecosys . Two types of experiments using synthetic and real ET observations were conducted to study the efficacy of the proposed framework for estimating irrigation water use at the irrigated fields in eastern and western Nebraska, United States. The experiments using synthetic ET observations indicated that, for two major sources of uncertainties of ET difference between observations and model simulations, which are bias and noise, noise had larger impacts on degrading the estimation performance of irrigation water use than bias. For the experiments using real ET observations, monthly and annual estimations of irrigation water use matched well with farmer irrigation records, with Pearson correlation coefficient ( r ) around 0.80 and 0.50, respectively. Although detecting daily irrigation records was very challenging, our method still gave a good performance with RMSE, BIAS, and r around 2.90, 0.03, and 0.4 mm/d, respectively. Our proposed model‐data fusion framework for estimating irrigation water use at high spatio‐temporal resolution could contribute to regional water management, sustainable irrigation, and better tracking terrestrial water cycle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
未来可期发布了新的文献求助10
刚刚
刚刚
1秒前
大佬发布了新的文献求助10
3秒前
完美世界应助要减肥天问采纳,获得10
4秒前
酷炫怀莲发布了新的文献求助10
4秒前
5秒前
5秒前
故意的曼香完成签到,获得积分10
7秒前
9秒前
Owen应助adeno采纳,获得10
9秒前
11秒前
852应助大佬采纳,获得10
11秒前
佑予和安发布了新的文献求助10
12秒前
酷炫怀莲完成签到,获得积分10
12秒前
kk完成签到 ,获得积分10
14秒前
Owen应助芭乐侠采纳,获得10
15秒前
15秒前
17秒前
17秒前
17秒前
18秒前
畅快的寻凝发布了新的文献求助150
19秒前
19秒前
lklklklk发布了新的文献求助10
20秒前
20秒前
哈哈哈完成签到 ,获得积分10
21秒前
荣耀发布了新的文献求助10
21秒前
CAOHOU应助杨桃采纳,获得10
21秒前
AmyHu发布了新的文献求助10
23秒前
FireNow发布了新的文献求助10
23秒前
24秒前
JIE完成签到 ,获得积分10
25秒前
Voyage发布了新的文献求助10
25秒前
25秒前
默默尔安发布了新的文献求助10
26秒前
芭乐侠发布了新的文献求助10
28秒前
荣耀完成签到,获得积分10
30秒前
30秒前
31秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4042167
求助须知:如何正确求助?哪些是违规求助? 3579840
关于积分的说明 11382457
捐赠科研通 3308364
什么是DOI,文献DOI怎么找? 1820436
邀请新用户注册赠送积分活动 893374
科研通“疑难数据库(出版商)”最低求助积分说明 815583