卤化物
兴奋剂
八面体
离子
钙钛矿(结构)
材料科学
格子(音乐)
光伏
结构稳定性
分子动力学
无机化学
纳米技术
化学
化学物理
光电子学
晶体结构
结晶学
计算化学
物理
光伏系统
有机化学
生态学
结构工程
声学
工程类
生物
作者
Yuhang Liang,Feng Li,Xiangyuan Cui,Catherine Stampfl,Simon P. Ringer,Xudong Yang,Jun Huang,Rongkun Zheng
出处
期刊:Science Advances
[American Association for the Advancement of Science]
日期:2025-03-14
卷期号:11 (11)
标识
DOI:10.1126/sciadv.ads7054
摘要
Lead halide perovskites hold great promise for photovoltaics and optoelectronics, yet ion migration continues to challenge their long-term stability. Here, combining first-principles calculations and machine learning molecular dynamics, we unravel the interplay between perovskite octahedral lattice dynamics and energy barrier associated with ion migration. Our results show that B-site substitution, particularly with alkaline-earth and lanthanide elements, notably strengthens lattice interactions, restrains octahedral oscillation, and increases iodine-migration barriers, outperforming the commonly used A-site and X-site substitutions and interstitial doping. Moreover, the enhanced barrier aligns with the geometric factor of μτ (tolerance-octahedral product), underlining the superior effectiveness of co- and multiple-element B-site doping in lattice stabilization and ion migration suppression. Experimental validation with exemplary hysteresis-free Eu-Ca–doped perovskite single crystals demonstrates remarkable improvements in ambient stability and transport properties. These findings highlight B-site engineering as an effective microstructural strategy for controlling ion migration, with important implications for stable and lead-reduced perovskite devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI